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1 Manual

1.1 Introduction

In this paper, we describe the utilization and genesis of an interactive website [1] you
can use to display, rotate, and unfold (unravel) four-dimensional hypercubes (figure 1.1).
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Chapter 1. Manual 1.2. Website

1.2 Website

Figure 1.1: Hypercube website [1]

The website has been programmed in Unity [2] in C#, compiled for WebGL, and
should run in every1 current desktop2 browser.

1Except for – who would have guessed – Internet Explorer which does not support WebAssem-
bly.

2Unity says, mobile browsers are not supported but displays the scene nevertheless.
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Chapter 1. Manual 1.3. Mouse

1.3 Mouse

Pressing the right mouse button, you can orbit the camera around the scenery (sec-
tion 2.8). With the mouse wheel you can zoom in and out.

1.4 Rotation

The A and the D key rotate the hypercube (figure 1.2) about the x-y-plane in the four-
dimensional hyperspace (section A.4.1); the Space key toggles an automatic rotation
about this plane.

Figure 1.2: Rotation about the x-y-plane in 4D space

1.5 Unfolding (unraveling)

The W key unfolds (and the S key folds back) the four-dimensional hypercube into the
three-dimensional space (figure 1.6).
For a better understanding of the unfolding of a 4D hypercube into the 3D space, we
have to step one dimension down and discuss the unfolding of a 3D cube into the 2D
plane.

1.5.1 Unfold a 3D cube into 2D

Figure 1.3 demonstrates three different ways to depict a 3D cube with transparent faces
on a 2D “piece of paper”.
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Figure 1.3: 3D cube with transparent faces

The exploded view3 in figure 1.3a highlights the actual transparent face colors (cyan
front, red back, yellow left, . . . ) that cannot be recognized easily in the other projections:
E. g., if we look through the transparent4 cyan front face at the transparent red back face
in the parallel projection in figure 1.3b, we see a gray color. In additive color mixing,
cyan (RGB: 0 1 1) light is a mixture of green (RGB: 0 1 0) light and blue (RGB: 0 0 1)
light, adding up with the red (RGB: 1 0 0) light to white/gray (RGB: 1 1 1).
We can see the same back face as the small inner gray square in the perspective pro-
jection depicted in figure 1.3c. Since we directly look in positive z-direction5, we see all
other faces through the transparent cyan front face. The main property of perspective
projection is that objects farther away are smaller; that’s why the inner back square is
actually drawn smaller than the outer front square. For the same reason, the other four
square faces (left, right, top, bottom), which connect the front face to the back face, are
depicted as trapezoids in figure 1.3c.
In preparation of the unfolding6, we take a sharp virtual knife and cut the cube open
along the seven edges indicated in figure 1.4.

Figure 1.4: Cube cuts
3In fact, the exploded view is a parallel projection as well.
4All faces have an alpha value of 20%, corresponding to an 80% transparency.
5Remember that Unity uses a left-handed coordinate system.
6We can unfold a cube into 11 different nets [3].
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Chapter 1. Manual 1.5. Unfolding (unraveling)

To actually unfold, we rotate7 all faces – except the front face – about their connecting
edges for ±90◦ in figure 1.5:

• The yellow left face rotates about the front left vertical y-axis for −90◦.
• The blue right face rotates about the front right vertical y-axis for +90◦.
• The magenta top face rotates about the front top horizontal x-axis for −90◦.
• The green bottom face rotates about the front bottom horizontal x-axis for +90◦.
• The red back face rotates about the back bottom horizontal x-axis for +90◦.

The rotation of the red back face is a bit tricky: Unlike the other four faces, the back face
is not connected to the fixed front face but to the bottom face which itself is rotating.
Therefore, the back face actually performs a double rotation with a final angle of 180◦.
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Figure 1.5: Unfolding a 3D cube into 2D

Starting with an initial rotation angle of Ξ = 0 rad in figure 1.5a, the back and side faces
detach from each other in figure 1.5b. All faces are still visible through the transparent

7We explain the positive direction of rotation in figure 2.2.
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Chapter 1. Manual 1.5. Unfolding (unraveling)

cyan front face. In figure 1.5c, the side faces are almost invisible.8 In figure 1.5d, the
side faces have rotated “outside” the cube and are visible from “the outside”. The back
face is still concealed by the bottom face. In figure 1.5e, the back face is finally visible
in its true red color underneath the green bottom face. The completely unfolded cube
with a rotation angle of 90◦ is depicted in figure 1.5f.

1.5.2 Unfold a 4D hypercube into 3D

The unfolding9 of a 4D hypercube into 3D in figure 1.6 looks very similar to the unfolding
of a 3D cube into 2D in figure 1.5 and is described in detail in section 2.7.7.

(a) Ξ = 0 (b) Ξ = 0.2 (c) Ξ = 0.6

(d) Ξ = 1.2 (e) Ξ = 1.4 (f) Ξ = π
2

Figure 1.6: Unfolding a 4D hypercube into 3D space

In table 1.1, we compare the 3D case (figure 1.5) with the 4D case (figure 1.6).

8Depending on the parameters of the perspective projection (section 2.7.9) there is an intermediate
angle with completely invisible side faces.

9The rotation angles Ξ in figure 1.6 are estimates.
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Chapter 1. Manual 1.5. Unfolding (unraveling)

3D case (figure 1.5) 4D case (figure 1.6)

The front face (with all of its edges) is
fixed.

The outer cube (with all of its faces) is
fixed.

Four side faces (depicted as trapezoids)
connect the front face to the back face.

Six “side” cubes (depicted as square
frustra) connect the outer cube to the
inner cube.

Faces are connected to each other via
their edges.

Cubes are connected to each other via
their faces.

The connecting edges are the rotational
axes.

The connecting faces are the rotational
planes (appendix A).

Before unfolding, we cut the cube along
seven of its edges, partly separating the
faces.

Before unfolding, we cut the hypercube
along 17 of its faces, partly separating
the cubes.

Each face can now freely rotate about its
fixed edge.

Each cube can now freely rotate about
its fixed face.

The back face is not directly connected
to the fixed front face but only to the
bottom face. Therefore, the back face
has to do a double rotation: together
with the bottom face and about the edge
connecting it to the bottom face.

The inner cube is not directly connected
to the fixed outer cube but only to the
bottom cube. Therefore, the inner cube
has to do a double rotation: together
with the bottom cube and about the
face connecting it to the bottom cube.

In figure 1.5b, the faces detach from
each other and start rotating.

In figure 1.6b, the cubes detach from
each other and start rotating.

In figure 1.5d, the side faces have
rotated “outside” the cube and are
visible from the front. The back face is
still concealed by the bottom face.

In figure 1.6d, the side cubes have
rotated “through” the outer cube and
are visible from the outside. The inner
cube is still concealed by the “bottom”
cube.

In figure 1.5e, the back face is finally
visible underneath the bottom face.

In figure 1.6e, the inner cube is finally
visible underneath the “bottom” cube.

The completely unfolded cube is
depicted in figure 1.5f.

The completely unfolded hypercube is
depicted in figure 1.6f [4].

Table 1.1: Comparison of the 3D case (figure 1.5) with the 4D case (figure 1.6)
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Chapter 1. Manual 1.6. Visibility

1.6 Visibility

The V key cycles the visibility of transparent cubes, vertex spheres, and edge cylinders
(figure 1.7).

(a) Cubes, spheres, and cylinders (b) Cubes and cylinders (c) Cubes

(d) Spheres and cylinders (e) Cylinders

Figure 1.7: The V key cycles the visibility of cubes, spheres, and cylinders.

1.7 Genesis

In this chapter, we explain how we can create an (n + 1)-dimensional hypercube by
moving an n-dimensional starting object towards an n-dimensional end object in a new
direction of the (n + 1)-dimensional hyperspace, connecting the (n − 1)-dimensional
object components by n-dimensional connection objects.
In the beginning, there was a point. And the point was a zero-dimensional hypercube
(figure 1.8).

Figure 1.8: The point, a zero-dimensional hypercube
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Chapter 1. Manual 1.7. Genesis

If we move the green 0D starting point in figure 1.9 in positive x-direction, to the right,
towards the red 0D end point, we obtain a blue one-dimensional hypercube (aka. a line
segment).

Figure 1.9: The line segment, a one-dimensional hypercube

If we move the green bottom 1D starting line segment in figure 1.10 in positive y-
direction, up, towards the red top 1D end line segment, we obtain a two-dimensional
hypercube (aka. a square). The 0D vertices of the starting and end line segments are
connected to each other by two blue 1D connecting line segments. All line segments are
the edges of the square.

Figure 1.10: The square, a two-dimensional hypercube

If we move the green back 2D starting square in figure 1.11 in positive z-direction,
backwards, towards the red back 2D square, we obtain a three-dimensional hypercube
(aka. a cube). Again, the 0D vertices of the starting and end squares are connected to
each other by four blue 1D connecting line segments. Additionally, the 1D edges of the
starting and end squares are connected to each other by four 2D connecting squares10:
the left square, the right square, the bottom square, and the top square in figure 1.11.
All squares are the faces of the cube.

Figure 1.11: The cube, a three-dimensional hypercube

If we move the green outer 3D starting cube in figure 1.12 in positive w-direction,
kata, towards the red inner 3D cube, we obtain a four-dimensional hypercube (aka. a
10Due to the perspective projection, the connecting squares look like trapezoids in figure 1.11.
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Chapter 1. Manual 1.7. Genesis

tesseract). Again, the 0D vertices of the starting and end cubes are connected to each
other by eight blue 1D connecting line segments. Again, the 1D edges of the starting and
end cubes are connected to each other by twelve 2D connecting squares. Additionally,
the 2D faces of the starting and end cubes are connected to each other by six 3D cubes11:
the left cube, the right cube, the bottom cube, the top cube, the front cube, and the
back cube in figure 1.12. All cubes are the hyperfaces of the hypercube.

Figure 1.12: The tesseract, a four-dimensional hypercube

11Due to the perspective projection, the connecting cubes look like square frustra in figure 1.12.
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2 Under the hood

2.1 Coordinate system

Unity uses a left-handed coordinate system:
• The thumb of your left hand points to your right (red x-axis in figure 2.1).
• The index finger of your left hand points up (green y-axis in figure 2.1).
• The middle finger of your left hand points away from you (blue z-axis in figure 2.1).

Figure 2.1: Left-handed coordinate system

The positive direction of a rotation is indicated by the curved fingers of your left hand
if your left thumb points towards the positive axis of rotation (figure 2.2).

Figure 2.2: Curved fingers of left hand indicate positive rotation.

• Align your left thumb with the positive red x-axis in figure 2.1. The curved fingers
of your left hand indicate that a positive rotation (of 90◦) rotates the green y-axis
into the blue z-axis.
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Chapter 2. Under the hood 2.2. MyHypercube prefab

• Align your left thumb with the positive green y-axis in figure 2.1. The curved
fingers of your left hand indicate that a positive rotation (of 90◦) rotates the blue
z-axis into the red x-axis (figure 2.2).

• Align your left thumb with the positive blue z-axis in figure 2.1. The curved fingers
of your left hand indicate that a positive rotation (of 90◦) rotates the red x-axis
into the green y-axis.

2.2 MyHypercube prefab

Besides the Camera (section 2.8) and the Lights (section 2.9), the Hypercube scene
contains just one GameObject: MyHypercube (figure 2.3). The blue color indicates that
MyHypercube is a prefab that we constructed before we used it in the scene.

Figure 2.3: MyHypercube prefab

The MyHypercube prefab is made up of eight MyCCS prefabs (section 2.3) of different
colors (figure 2.4).

Figure 2.4: MyHypercube consists of eight MyCCS prefabs.

We attach a script (section 2.7) to the MyHypercube GameObject (figure 2.5) that is
responsible for all the user interaction with the hypercube.

Figure 2.5: HypercubeScript
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Chapter 2. Under the hood 2.3. MyCCS prefab

2.3 MyCCS prefab

The CCS in MyCCS stands for Cube, Cylinders, and Spheres. As depicted in figure 2.6, a
MyCCS prefab consist of one MyCube prefab (section 2.4), eight MySphere prefabs (sec-
tion 2.5), and twelve MyCylinder prefabs (section 2.6).

(a) MyCCS children (b) MyCCS object

Figure 2.6: A MyCCS prefab consists of a cube, spheres, and cylinders.

2.4 MyCube prefab

As in most 3D programs, we create meshes in Unity by defining vertices and triangles
that use three vertices each. If we assign a material (with a color) to the mesh, we create
a surface. Surfaces then make up objects.
Unity pursues an interesting concept regarding edge smoothing: If two triangles share
(reuse) the same two vertices, the corresponding edge is smooth; if both triangles use
their own vertices (even if these have the same coordinates), the edge is sharp.
Therefore, we need 24 vertices to define a cube with sharp edges: The cube itself has
eight vertices but every vertex belongs to three independent triangular faces. Or, as
seen from a different point of view: Each of the six quadratic faces of the cube uses is
own four vertices.
Unity can create a few 3D primitives by itself:

• Cube

• Sphere

• Capsule

14



Chapter 2. Under the hood 2.4. MyCube prefab

• Cylinder

• Plane

• Quad

Therefore, we could have used the Cube primitive instead of our own MyCube prefab.
Unfortunately, Unity’s Cube primitive uses some unorthodox way of ordering its 24
mesh vertices (figure 2.7).

Figure 2.7: Mesh vertices of Unity’s Cube primitive

While we can clearly recognize the structure Unity uses in figure 2.7, we prefer the
direct repetition of the eight primary cube vertices depicted in figure 2.8.

15



Chapter 2. Under the hood 2.4. MyCube prefab

Figure 2.8: Mesh vertices of MyCube prefab

The red, green, and blue sections in figure 2.8 contain the same vertices in the same
order. Since the cube has an edge length of 1.0 and is centered around the origin, all
vertex components are either +0.5 or −0.5. Therefore, we can use a simple sign table
(table 2.1) to display the structure of our primary cube vertices:

0 1 2 3 4 5 6 7
x − − − − + + + +
y − − + + − − + +
z − + − + − + − +

Table 2.1: MyCube vertex signs

Utilizing the left-handed coordinate system of section 2.1, the first four vertices are
located “on the left face” (negative x-component), the first two vertices (and the fifth
and sixth vertices) are located on the bottom face (negative y-component), and the first
vertex (and every vertex with an even index) is located on the front face (negative z-
component) of the cube. Just like the systematic construction of the hypercube vertices
in table 2.2, we could create the cube vertices by three nested for-loops (figure 2.9).
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Chapter 2. Under the hood 2.4. MyCube prefab

for (int ix = 0; ix <= 1; ix++)
{

for (int iy = 0; iy <= 1; iy++)
{

for (int iz = 0; iz <= 1; iz++)
{

cubeVertices [4 * ix + 2 * iy + iz] =
new Vector4 (2 * ix - 1, 2 * iy - 1, 2 * iz - 1)
* 0.5f;

}
}

}

Figure 2.9: Create cube vertices by three nested for-loops

The exploded view of figure 2.10 indicates which vertices we use for which faces of the
cube. Additionally, figure 2.10 defines which vertices we use for which triangles.
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Figure 2.10: Vertex indices and triangle definitions of MyCube prefab

In Unity, a triangle is only rendered if its vertices are defined in a clockwise order.
Therefore, the two triangles forming the (yellow) left face of the cube in figure 2.10 have
to have the clockwise order 0 → 1 → 2 and 1 → 3 → 2 in order to be rendered if we
look at the cube from the outside (from the left). If we looked at the yellow face from
the inside of the cube (from the right) we would not see anything at all. The choice of
the first triangle vertex does not matter; we could have chosen 1→ 2→ 0 or 2→ 0→ 1
for the first triangle. The vertex indices of all triangles (two triangles per cube face) are
listed in figure 2.11 with a background color according to figure 2.10.

17



Chapter 2. Under the hood 2.5. MySphere prefab

Left
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Front

Back

Figure 2.11: Mesh triangle indices of MyCube prefab

Finally, we attach a Cube tag to the MyCube prefab (figure 2.12).

Figure 2.12: All cubes have a Cube tag.

We will use these tags to find all cubes and toggle their visibility in section 2.7.14.

2.5 MySphere prefab

We use spheres to indicate the vertices of the cubes. Therefore, the MySphere prefab is
just a primitive sphere scaled down to 5 % with a grey material.
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Chapter 2. Under the hood 2.6. MyCylinder prefab

(a) MySphere object (b) MySphere data

Figure 2.13: MySphere prefab

Finally, we attach a Sphere tag to the MySphere prefab (figure 2.13b). We will use
these tags to find all spheres, toggle their visibility in section 2.7.14, and hide those with
identical positions in section 2.7.15.

2.6 MyCylinder prefab

We use cylinders to display the edges of the cubes. Therefore, the MyCylinder prefab
is just a primitive cylinder with a length (height) of 0.5, a diameter of 1 %, and grey
material.

(a) MyCylinder object (b) MyCylinder data

Figure 2.14: MyCylinder prefab

Finally, we attach a Cylinder tag to the MyCylinder prefab (figure 2.14b). We will use
these tags to find all cylinders, toggle their visibility in section 2.7.14, and hide those
with identical positions in section 2.7.15.
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Chapter 2. Under the hood 2.7. HypercubeScript

2.7 HypercubeScript

The HypercubeScript script is attached to the MyHypercube GameObject. It creates
the hypercube vertices and defines the indices of the cubes and the cylinders. In every
simulation step, it manages the user interaction, rotates and unfolds the hypercube and
updates the hypercube projection into 3D.
Unity scripts automatically import some standard types from predefined namespaces
of which we only use the UnityEngine:
using UnityEngine;

Every Unity script derives from the MonoBehaviour base class:
public class Spheres_class : MonoBehaviour
{

Before we define the Start function, we declare1 some (global) objects and variables as
properties:
private GameObject [] allCubes;
private GameObject [] allSpheres;
private GameObject [] allCylinders;
private int nAllSpheres;
private int nAllCylinders;
private float angleXY = 0f;
private float angleUnfold = 0f;
private float previousAngleUnfold = 0f;
private Vector4 [] hypercubeVerticesOriginal;
private Vector4 [] hypercubeVertices;
private Vector3 [] cubeVertices;
private Vector3 [] meshVertices;
private const int nHypercubeVertices = 16;
private const int nCubeVertices = 8;
private const int nMeshVertices = 24;
private const int nCubes = 8;
private const int nCylinders = 12;
private int[,] cylinderIndices;
private int[,] cubeIndices;
private int visibility = 0;
private bool autorotate = true;

2.7.1 Start

The start function is called before the first simulation step. It creates the hypercube
vertices and defines the indices of the cubes and the cylinders:

1We explain variables, the meaning of which cannot directly be derived from their names, when we
first use them. nHypercubeVertices obviously is the number of vertices in a hypercube, . . .
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Chapter 2. Under the hood 2.7. HypercubeScript

void Start()
{

In the function, we define the constant half-length of the hypercube
const float sizeHypercube = 0.5f;

let Unity find all cube, sphere, and cylinder GameObjects

allCubes = GameObject.FindGameObjectsWithTag("Cube");
allSpheres = GameObject.FindGameObjectsWithTag("Sphere");
allCylinders = GameObject.FindGameObjectsWithTag("Cylinder");

and determine2 the number of spheres and cylinders it has found:
nAllSpheres = allSpheres.Length;
nAllCylinders = allCylinders.Length;

Additionally, we instantiate the containers for the vertices of a cube, a hypercube3, and
a cube mesh:
cubeVertices = new Vector3[nCubeVertices ];
hypercubeVerticesOriginal = new Vector4[nHypercubeVertices ];
hypercubeVertices = new Vector4[nHypercubeVertices ];
meshVertices = new Vector3[nMeshVertices ];

We use four nested for-loops to systematically define the 16 vertices of a 4D hypercube:

2Yes, we know the number of cubes, the number of vertices and edges per cube . . .
3Fortunately, Unity offers generic four-dimensional vectors (Vector4) and even 4 × 4 matrices
(Matrix4x4). Usually, these four-dimensional entities are used for homogeneous coordinates [5]
but we are very lucky to use them for true 4D vertices and rotations.
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Chapter 2. Under the hood 2.7. HypercubeScript

for (int ix = 0; ix <= 1; ix++)
{

for (int iy = 0; iy <= 1; iy++)
{

for (int iz = 0; iz <= 1; iz++)
{

for (int iw = 0; iw <= 1; iw++)
{

hypercubeVerticesOriginal
[8 * ix + 4 * iy + 2 * iz + iw] =
new Vector4
(2 * ix - 1, 2 * iy - 1, 2 * iz - 1, 2 * iw - 1)
* sizeHypercube;

}
}

}
}

Figure 2.15: All vertices of the unit hypercube are centered around the origin.

Since the unit hypercube has an edge length of 1.0 and is centered around the origin, all
vertex components are either +0.5 or −0.5. Therefore, we can use a simple sign table
(table 2.2) to display the structure of the original hypercube vertices:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
x − − − − − − − − + + + + + + + +
y − − − − + + + + − − − − + + + +
z − − + + − − + + − − + + − − + +
w − + − + − + − + − + − + − + − +

Table 2.2: Hypercube vertex signs

As explained in section 1.7, a hypercube consists of eight cubes. We define which hy-
percube vertex belongs to which cube by searching for eight vertices with the same sign
in a row in table 2.2. We e. g. find the first eight vertices to have negative signs in the
first row in table 2.2 (x = −0.5). This is the “left” cube (first row of cubeIndices):
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Chapter 2. Under the hood 2.7. HypercubeScript

cubeIndices = new int[nCubes , 8]
{

{0, 1, 2, 3, 4, 5, 6, 7},
{8, 9, 10, 11, 12, 13, 14, 15},
{0, 1, 2, 3, 8, 9, 10, 11},
{4, 5, 6, 7, 12, 13, 14, 15},
{0, 1, 4, 5, 8, 9, 12, 13},
{2, 3, 6, 7, 10, 11, 14, 15},
{0, 2, 4, 6, 8, 10, 12, 14},
{1, 3, 5, 7, 9, 11, 13, 15}

};

Figure 2.16: List of cube vertex indices

The “right” cube consists of the second half of vertices in table 2.2 all of which have
positive signs in the first row (x = +0.5). The “bottom” cube has negative signs in the
second row (y = −0.5) of table 2.2 resulting in cube indices of 0 − 3 and 8 − 11 (third
row of cubeIndices).
The last row of cubeIndices addresses all vertices with odd indices (1, 3, 5, . . . , 15).
These are the vertices having a positive w-component (w = +0.5) in table 2.2. Even
though we cannot directly imagine the fourth perpendicular direction (ana ↔ kata), we
could call this cube the “kata” cube or the “outer” cube in figure 1.1.
Finally, we define the edges of the cubes which are displayed by thin cylinders (sec-
tion 2.6):

cylinderIndices = new int[nCylinders , 2]
{

{0, 1},
{0, 2},
{0, 4},
{1, 3},
{1, 5},
{2, 3},
{2, 6},
{3, 7},
{4, 5},
{4, 6},
{5, 7},
{6, 7}

};
}

Figure 2.17: List of cylinder end vertices
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Chapter 2. Under the hood 2.7. HypercubeScript

As depicted in figure 2.18
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Figure 2.18: Vertices of a cube

there are edges between vertex 0 and vertex 1 (first row of cylinderIndices), between
vertex 0 and vertex 2 (second row of cylinderIndices), . . . , and between vertex 6 and
vertex 7 (last row of cylinderIndices).

2.7.2 Update

The Update function is called in every simulation step:
private void Update ()
{

We use it to determine if the user has pressed a key.
If they pressed the V key
if (Input.GetKeyDown(KeyCode.V))

we cycle the visibility flag through its five states (figure 1.7 and section 2.7.14):
{

visibility = (visibility + 1) % 5;
}

If they pressed the Space bar
if (Input.GetKeyDown(KeyCode.Space))

we toggle the autorotate flag (section 2.7.3):
{

autorotate = !autorotate;
}
}
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Chapter 2. Under the hood 2.7. HypercubeScript

2.7.3 FixedUpdate

In every fixed4 rate simulation step
private void FixedUpdate ()
{

we trigger the actual rotation and unfolding of the hypercube.
If the user pressed the A or the D key5 we de- or increment the rotation angle about the
x-y-plane by a small6 amount:
angleXY += Input.GetAxis("Horizontal") * 0.5f * Time.deltaTime;

Additionally, we de- or increment the unfold angle with the W/S key pair
angleUnfold += Input.GetAxis("Vertical") * 0.5f * Time.deltaTime;

and restrict its domain at 0◦ . . . 90◦:
angleUnfold = Mathf.Clamp(angleUnfold , 0, Mathf.PI / 2);

If the user has used the W or the S key, the unfold angle has changed
if (angleUnfold != previousAngleUnfold)

and we reset the rotation angle
{

angleXY = 0;

switch off auto rotation
autorotate = false;

and buffer the current unfold angle for comparison in the next time step:
previousAngleUnfold = angleUnfold;

}

If the autorotate flag is on
if (autorotate)

we increment the rotation angle for a very small amount in every time step, resulting in
a very slow automatic rotation of the hypercube:

4It seems reasonable to perform “asynchronous” actions (like switching properties on and off) in the
Update method and use the FixedUpdate method for all continuous visible actions that should take
place with a constant “velocity” (like rotating).

5The left arrow and right arrow keys (defining the “Horizontal” input axis) are automatically
mapped to the A/D key pair that gamers are more familiar with.

6The multiplication with Time.deltaTime ensures a constant angular velocity with possibly inconsis-
tent frame rates.
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{
angleXY += 0.05f * Time.deltaTime;

}

If the rotation angle is not zero any more (because the user has pressed the A or the D
key without pressing the W or S key)
if (angleXY != 0)

we reset7 the unfold angle
{

angleUnfold = 0;
}

We now want to do the rotation of the hypercube about the x-y-plane in the 4D space
(figure 1.2). Inside a loop over all vertices of the hypercube
for (

int iHypercubeVertex = 0;
iHypercubeVertex < nHypercubeVertices;
iHypercubeVertex ++)

we rotate each hyperspace vertex8 by multiplying it (from the left) with the 4D rotation
matrix calculated from the current rotation angle in section 2.7.4:
{

hypercubeVertices[iHypercubeVertex] =
RotationXY(angleXY) *
hypercubeVerticesOriginal[iHypercubeVertex ];

}

Additionally, we unfold (section 1.5.2), project, and display the hypercube cube by cube
utilizing the UnfoldCube method (section 2.7.7):
UnfoldCube (0, new Vector4 (0.5f, 0, 0, 0.5f),

RotationYZ(-angleUnfold )); // Left cube

UnfoldCube (1, new Vector4 (-0.5f, 0, 0, 0.5f),
RotationYZ(angleUnfold )); // Right cube

UnfoldCube (2, new Vector4(0, 0.5f, 0, 0.5f),
RotationXZ(angleUnfold )); // Bottom cube

7This ensures that rotating and unfolding does not happen at the same time; simultaneous rotating
and unfolding looks weird and does not provide any further insights.

8Please note that we rotate the original vertices by an increasing rotation angle instead of rotating the
current vertices incrementally by a small rotation angle increments. Therefore, we do not overwrite
the original vertices but use a second variable for the current vertices.
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UnfoldCube (3, new Vector4(0, -0.5f, 0, 0.5f),
RotationXZ(-angleUnfold )); // Top cube

UnfoldCube (4, new Vector4(0, 0, 0.5f, 0.5f),
RotationXY(angleUnfold )); // Back cube

UnfoldCube (5, new Vector4(0, 0, -0.5f, 0.5f),
RotationXY(-angleUnfold )); // Front cube

Unfolding involves a translation of the 4D rotation plane into the origin (second pa-
rameter of the UnfoldCube method), the rotation (section 2.7.6, section 2.7.5 and
section 2.7.4) about the rotation plane of that specific cube (third parameter of the
UnfoldCube method), and the translation of the rotation plane back to its original po-
sition.
The outer cube of figure 1.6a (index 6) does not9 have to be unfolded at all; it becomes
the concealed inner cube after the unfolding (figure 1.6f):
UnfoldCube (6, new Vector4(0, 0, 0, 0),

Matrix4x4.identity ); // Outer cube , no unfolding

Just like the back plane in figure 1.5, the inner cube (index 7) has to be rotated twice;
we use a separate method (section 2.7.8) for that:
UnfoldInnerCube (7, new Vector4(0, 0.5f, 0, 0.5f),

RotationXZ(angleUnfold )); // Inner cube , double unfolding!

Finally, the VisibilityCubesSpheresCylinders method (section 2.7.14)
VisibilityCubesSpheresCylinders ();

updates the visibility of the cubes, spheres, and cylinders and the AntiZFighting
method (section 2.7.15) hides duplicate objects to prevent z-fighting [6]:
AntiZFighting ();
}

2.7.4 RotationXY

We only use three of the six 4D rotations defined in section A.4: the rotation about
the x-y-plane (section A.4.1), the rotation about the x-z-plane (section A.4.5), and
the rotation about the y-z-plane (section A.4.2).We define a separate method for each
rotation.
The method to rotate about the x-y-plane

9No translation (Vector4(0, 0, 0, 0)) and no rotation (Matrix4x4.identity) is necessary for the
outer cube. Nevertheless, we still have to call the UnfoldCube method because we perform the
projection of the cube and the update of the mesh, spheres, and cylinders inside the UnfoldCube
method.
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private Matrix4x4 RotationXY(float angle)
{

gets the rotation angle via its parameter list and computes the cosine (c), the sine (s),
and the negative sine (m) of the rotation angle:
float c = Mathf.Cos(angle );
float s = Mathf.Sin(angle );
float m = -s;

After instantiating a new 4D rotation matrix
Matrix4x4 rotationMatrix = new Matrix4x4 ();

we define the matrix10 using c, s, and m according to equation (A.4):
rotationMatrix.SetRow(0, new Vector4(1, 0, 0, 0));
rotationMatrix.SetRow(1, new Vector4(0, 1, 0, 0));
rotationMatrix.SetRow(2, new Vector4(0, 0, c, m));
rotationMatrix.SetRow(3, new Vector4(0, 0, s, c));

Finally, we return the 4× 4 rotation matrix:
return rotationMatrix;
}

2.7.5 RotationXZ

We compute11 the the rotation matrix about the x-z-plane in a similar way according
to equation (A.6):
private Matrix4x4 RotationXZ(float angle)
{
float c = Mathf.Cos(angle );
float s = Mathf.Sin(angle );
float m = -s;
Matrix4x4 rotationMatrix = new Matrix4x4 ();
rotationMatrix.SetRow(0, new Vector4(1, 0, 0, 0));
rotationMatrix.SetRow(1, new Vector4(0, c, 0, m));
rotationMatrix.SetRow(2, new Vector4(0, 0, 1, 0));
rotationMatrix.SetRow(3, new Vector4(0, s, 0, c));
return rotationMatrix;
}

10Using one-letter variables, the matrix code structure bears a clear resemblance to the matrix definition
in equation (A.4).

11Since we compute all rotation matrices for the same (negative) angle, we could save some computing
time by calculating the cosine, sine, and negative sine outside these methods and provide the methods
with the calculated values via their parameter lists. Nevertheless, for reusability reasons, we do the
computation of the trigonometric functions inside the methods.
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2.7.6 RotationYZ

We compute the the rotation matrix about the y-z-plane in a similar way according to
equation (A.5):
private Matrix4x4 RotationYZ(float angle)
{
float c = Mathf.Cos(angle );
float s = Mathf.Sin(angle );
float m = -s;
Matrix4x4 rotationMatrix = new Matrix4x4 ();
rotationMatrix.SetRow(0, new Vector4(c, 0, 0, s));
rotationMatrix.SetRow(1, new Vector4(0, 1, 0, 0));
rotationMatrix.SetRow(2, new Vector4(0, 0, 1, 0));
rotationMatrix.SetRow(3, new Vector4(m, 0, 0, c));
return rotationMatrix;
}

2.7.7 UnfoldCube

The eight calls to the UnfoldCube method on page 27
private void UnfoldCube(

int iCube , Vector4 translation , Matrix4x4 rotationMatrix)
{

are done in every simulation step in order to unfold the hypercube (if the user has initi-
ated the unfolding). Additionally, UnfoldCube calls the perspective projection method
and the update method for the selected cube’s mesh, its spheres, and its cylinders.
Each call to UnfoldCube translates and rotates a specific cube. The translation is
necessary because all cubes are initially centered around the origin (22); a pure rotation12

would therefore rotate the cube about its center in the origin as well. If we want to 4D
rotate the cube about one of its faces13, we have to translate the cube with this face into
the origin, do the rotation and translate the fixed face (together with the rotated cube)
back to its former position.
After declaring a buffer for a single 4D vertex of the selected cube
Vector4 hypercubeVertexBuffer;

we start a loop over all eight vertices of a cube:

12Rotations (section A.4) are always done around the origin.
13The contra-intuitive 4D rotation about a fixed face is explained in appendix A. Even though it is

very hard to imagine for us limited 3D beings, we have to understand that the rotation plane of a
4D rotation is indeed fixed. The whole rotation plane itself is not rotated; just like the rotation axis
of a 3D rotation!
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for (
int iCubeVertex = 0;
iCubeVertex < nCubeVertices;
iCubeVertex ++)

{

Inside the loop, we buffer the current vertex of the selected cube (iCube) using the cube
vertex index array cubeIndices (figure 2.16):

hypercubeVertexBuffer =
hypercubeVertices[cubeIndices[iCube , iCubeVertex ]];

Each vertex is then translated to move the fixed rotation face into the origin
hypercubeVertexBuffer += translation;

rotated, using the specific rotation matrix from the parameter list
hypercubeVertexBuffer =

rotationMatrix * hypercubeVertexBuffer;

and translated back to move the fixed rotation face back into its former position:
hypercubeVertexBuffer -= translation;

Finally, all we have to do is to project the current vertex from 4D to 3D using the
perspective projection method described in section 2.7.9

cubeVertices[iCubeVertex] =
PerspectiveProjectionOfOneVertex(hypercubeVertexBuffer );

}

and update the mesh, the vertex spheres, and the edge cylinders of the current cube
(section 2.7.10):
MeshSpheresAndCylindersUpdate(iCube );
}

2.7.8 UnfoldInnerCube

The unfolding of the inner cube is a bit more tricky. Just like the red back face in
figure 1.5 is not directly connected to the fixed front face but only to the bottom face,
the inner cube is not directly connected to the fixed outer cube but only to the bottom
cube (figure 1.6). Therefore, the inner cube has to be rotated twice: One rotation
together with the bottom cube and another one about the face connecting it to the
bottom cube. Since these two rotations depend on each other, we define an separate
method for the rotation of the inner cube:
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private void UnfoldInnerCube(
int iCube ,
Vector4 translation ,
Matrix4x4 rotationMatrix)

{

We use the result of the first rotation in the second rotation. Therefore, we instantiate
a buffer for all the vertices of the cube after the first rotation
Vector4 [] hypercubeVerticesBuffer = new Vector4[nCubeVertices ];

and a 4D vector for the second translation
Vector4 secondTranslation = new Vector4 ();

The first rotation is just a standard translation/rotation/translation about the face of
the fixed outer cube. It is similar to the rotation of the bottom cube on page 27. The
only difference is the fact that we save all rotated vertices in the buffer:
for (

int iCubeVertex = 0;
iCubeVertex < nCubeVertices;
iCubeVertex ++)

{
hypercubeVerticesBuffer[iCubeVertex] =

hypercubeVertices[cubeIndices[iCube , iCubeVertex ]];

hypercubeVerticesBuffer[iCubeVertex] += translation;

hypercubeVerticesBuffer[iCubeVertex] =
rotationMatrix * hypercubeVerticesBuffer[iCubeVertex ];

hypercubeVerticesBuffer[iCubeVertex] -= translation;
}

The second rotation is done about the “lower” face14 of the currently rotating inner
cube. Inside a second loop over all cube vertices
for (

int iCubeVertex = 0;
iCubeVertex < nCubeVertices;
iCubeVertex ++)

{

we define the second translation that translates the lower face of the currently rotating
inner cube to the origin:

14At first, the face that connects the inner cube to the bottom cube is the “lower” face of the inner
cube. During the unfolding, this connecting face becomes the upper face of the inner cube.
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secondTranslation.y = -hypercubeVerticesBuffer [1].y;
secondTranslation.w = -hypercubeVerticesBuffer [1].w;

Now we can do the second standard translation/rotation/translation
hypercubeVerticesBuffer[iCubeVertex] += secondTranslation;

hypercubeVerticesBuffer[iCubeVertex] =
rotationMatrix * hypercubeVerticesBuffer[iCubeVertex ];

hypercubeVerticesBuffer[iCubeVertex] -= secondTranslation;

and the projection and update of mesh, spheres, and cylinders:
cubeVertices[iCubeVertex] =

PerspectiveProjectionOfOneVertex
(hypercubeVerticesBuffer[iCubeVertex ]);

}
MeshSpheresAndCylindersUpdate(iCube );
}

2.7.9 PerspectiveProjectionOfOneVertex

We want to use perspective projection to project the 4D hypercube into our 3D space,
just like the perspective projection of the 3D cube onto the 2D plane in figure 1.3c.
To derive the equations of the perspective projection of an n-dimensional object into
the (n − 1)-dimensional subspace, we demonstrate the perspective projection of a 2-
dimensional object onto a 1-dimensional “screen” in figure 2.19.

P�(x�, w�)

P�(x�, w�)

w�w�w�

x�
x

x�

w

2D object

1D screen

Origin

Figure 2.19: Perspective projection of a 2D object onto a 1D screen

We connect an arbitrary point P1(x1, w1) of the 2D object in figure 2.19 with the origin
(center of projection, camera, eye, spectator, . . . ) at w0 by a red line. This red line
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intersects the green 1D screen line (canvas, image, view “plane”, projection “plane”, . . . )
at the projection point P2(x2, w2). Since we can arbitrarily choose w0 and w2 (as long
as they are outside the object), we are looking for the unknown x2-component of the
projection point P2 on the screen. We can identify two similar triangles ∆(w0, w2, P2)
and ∆(w0, w1, P1) with equal ratios of corresponding side

x2

w2 − w0
= x1

w1 − w0

resulting in the unknown projection coordinate:

x2 = x1(w2 − w0)
w1 − w0

(2.1)

Since we are already projecting the object along the fourth (ana↔ kata) w-axis, we can
scale up the problem two dimensions and compute the other two coordinates of a 4D
object in our 3D projection space in the same way:

y2 = y1(w2 − w0)
w1 − w0

(2.2)

z2 = z1(w2 − w0)
w1 − w0

(2.3)

We are now ready to write the method to project a single 4D vertex of the hypercube
into our 3D space:
private Vector3 PerspectiveProjectionOfOneVertex(

Vector4 hypercubeVertex)
{

Since the minimum w-coordinate of a hypercube vertex is −0.5, we position the origin
(figure 2.19) and the 3D screen “a little bit to the ana” of the hypercube:
const float wOrigin = -1.5f;
const float wScreen = -0.5f;

We declare a three-dimensional vector for the 3D projection of the hypercube vertex
Vector3 cubeVertex;

and use equations (2.1), (2.2), and (2.3) to compute and return its components:
cubeVertex.x = hypercubeVertex.x * (wScreen - wOrigin) /

(hypercubeVertex.w - wOrigin );

cubeVertex.y = hypercubeVertex.y * (wScreen - wOrigin) /
(hypercubeVertex.w - wOrigin );
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cubeVertex.z = hypercubeVertex.z * (wScreen - wOrigin) /
(hypercubeVertex.w - wOrigin );

return cubeVertex;
}

2.7.10 MeshSpheresAndCylindersUpdate

As the name of
private void MeshSpheresAndCylindersUpdate(int iCube)
{

implies, this method is just a container for the update methods of the mesh (sec-
tion 2.7.11), the vertex spheres (section 2.7.12), and the edge cylinders (section 2.7.13)
of the current cube:
MeshUpdate(iCube );
SpheresUpdate(iCube );
CylindersUpdate(iCube );
}

2.7.11 MeshUpdate

As indicated in figure 2.20, MyCube prefabs (section 2.4) are children of MyCCS prefabs
(section 2.3) which are children of the MyHypercube prefab (section 2.2).

Figure 2.20: The cube is a grandchild of the hypercube.

Therefore, if we want to update the mesh of a single cube in
private void MeshUpdate(int iCube)
{

we have to address (read from right to left) the mesh of the meshfilter of the first child
(the cube) of a specific child (the CCS) of the transform of the hypercube:
Mesh mesh = transform.GetChild(iCube). GetChild (0).

GetComponent <MeshFilter >(). mesh;

Inside a loop over all vertices of the current cube
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for (
int iCubeVertex = 0;
iCubeVertex < nCubeVertices;
iCubeVertex ++)

{

we use another loop to address all three mesh vertices (figure 2.8) of every cube vertex:
for (

int iMeshVertex = 0;
iMeshVertex < nMeshVertices;
iMeshVertex += nCubeVertices)

{

Inside the loop we copy the current vertex of the current cube to its mesh vertex:
meshVertices[iCubeVertex + iMeshVertex] =

cubeVertices[iCubeVertex ];
}

}

Finally, we copy the just computed mesh vertices to the corresponding mesh property
mesh.vertices = meshVertices;

and recalculate the normals in order to update lights, shadows, and reflections on the
cube:
mesh.RecalculateNormals ();
}

2.7.12 SpheresUpdate

In
private void SpheresUpdate(int iCube)
{

we move all vertex spheres of the current cube to its current vertex. The spheres are
great grandchildren of the hypercube (figure 2.21).

Figure 2.21: The eight vertex spheres of a cube are great grandchildren of the hypercube.
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Inside a loop over all vertices of the current cube
for (

int iCubeVertex = 0;
iCubeVertex < nCubeVertices;
iCubeVertex ++)

{

we set the position of the current sphere to the position of the current vertex:
transform.GetChild(iCube ). GetChild (1). GetChild(iCubeVertex ).

position = cubeVertices[iCubeVertex ];
}
}

2.7.13 CylindersUpdate

The update of the edge cylinders is a bit more difficult. In
private void CylindersUpdate(int iCube)
{

we start a loop over all edge cylinders of the current cube:
for (

int iCylinder = 0;
iCylinder < nCylinders;
iCylinder ++)

{

Inside the loop, we define both end points of the current cylinder using the list in
figure 2.17

Vector3 startPoint =
cubeVertices[cylinderIndices[iCylinder , 0]];

Vector3 endPoint =
cubeVertices[cylinderIndices[iCylinder , 1]];

and compute a vector to the center of the edge
Vector3 midPoint = (startPoint + endPoint) / 2;

and another one from the start point of the edge to its end point:
Vector3 connection = endPoint - startPoint;

As indicated in figure 2.22, the 12 edge cylinders of a cube are great grandchildren of
the hypercube
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Figure 2.22: The 12 edge cylinders of a cube are great grandchildren of the hypercube.

and can therefore be accessed in the same way as the spheres:
Transform cylinderTransform =

transform.GetChild(iCube ). GetChild (2). GetChild(iCylinder );

Since the projected “cubes” are square frustra in 3D, their edges might not have unit
length. Therefore, we have to access the scale of the current edge

Vector3 scale = cylinderTransform.localScale;

and fit15 the cylinder to the distance between its start vertex and its end vertex:
scale.y = connection.magnitude / 2;

The pivot point of Unity’s prefab cylinder is at its center. Therefore, we position the
current cylinder at the already computed mid point between its cube vertices:

cylinderTransform.position = midPoint;

Now we have to align the cylinder with the vector between its cube vertices. Fortunately,
we can do that by simply aligning the cylinders up direction with the already computed
vector from the start vertex to the end vertex:

cylinderTransform.up = connection;

Finally, we write the updated scale back to the transform of the current cylinder:
cylinderTransform.localScale = scale;

}
}

15Unity’s prefab cylinder has a height of 2 (from y = −1 to y = +1); hence we have to divide its
y-component by 2.
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2.7.14 VisibilityCubesSpheresCylinders

In section 2.7.2 we cycle the visibility flag (visibility) through its five states if the
user presses the V key. The VisibilityCubesSpheresCylinders method
private void VisibilityCubesSpheresCylinders ()
{

uses the visibility flag to actually enable or disable the visibility of transparent cubes,
vertex spheres, and edge cylinders (figure 1.7).
After defining the default visibility values of the objects
bool visibilityCubes = false;
bool visibilitySpheres = false;
bool visibilityCylinders = false;

we define the visibilities of the cubes, spheres, and cylinders separately depending on
the visibility flag:
switch (visibility)
{

The five different cases resemble figure 1.7:
case 0:

visibilityCubes = true;
visibilitySpheres = true;
visibilityCylinders = true;
break;

case 1:
visibilityCubes = true;
visibilitySpheres = false;
visibilityCylinders = true;
break;

case 2:
visibilityCubes = true;
visibilitySpheres = false;
visibilityCylinders = false;
break;

case 3:
visibilityCubes = false;
visibilitySpheres = true;
visibilityCylinders = true;
break;
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case 4:
visibilityCubes = false;
visibilitySpheres = false;
visibilityCylinders = true;
break;

}

We found all cube, sphere, and cylinder objects in section 2.7.1. Therefore, we can now
easily set the visibilities of these object groups separately:
foreach (GameObject cube in allCubes)
{

cube.GetComponent <Renderer >(). enabled =
visibilityCubes;

}

foreach (GameObject sphere in allSpheres)
{

sphere.GetComponent <Renderer >(). enabled =
visibilitySpheres;

}

foreach (GameObject cylinder in allCylinders)
{

cylinder.GetComponent <Renderer >(). enabled =
visibilityCylinders;

}
}

2.7.15 AntiZFighting

If two triangles share the same vertices, the renderer has to decide for every single
pixel which triangle to display. Sometimes, the renderer randomly switches between
the triangles, leading to the spotted appearance displayed in figure 2.23. Since even in
figure 1.6f some of the cubes are still joined face to face, they share some vertex spheres
and edge cylinders.

Figure 2.23: Z-fighting makes multiple spheres at the same position appear spotted.
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The easiest16 way to prevent this z-fighting is to check for every sphere and cylinder if
another one is already present at the same position and then disable the visibility of the
doublet. Therefore, in
private void AntiZFighting ()
{

we start a loop over every sphere:
for (

int isphere = 0;
isphere < nAllSpheres;
isphere ++)

{

Inside the loop, we start another loop over every remaining17 sphere:
for (

int iisphere = isphere + 1;
iisphere < nAllSpheres;
iisphere ++)

{

If both spheres share the same position
if (

allSpheres[isphere ]. transform.position ==
allSpheres[iisphere ]. transform.position)

{

we simply make the second sphere invisible:
allSpheres[iisphere ]. GetComponent <Renderer >(). enabled =

false;
}

}
}

The same is done for every cylinder:
for (

int icylinder = 0;
icylinder < nAllCylinders;
icylinder ++)

16Yes, we could a priori analyze the positions of all spheres and cylinders and then only display (or
even create) the necessary ones. And yes, we would have done that if we were only talking about
the 3D projection of the hypercube. But since during the unfolding, some of the cube face joints
are cut and some spheres and cylinders become separated, we would have to keep track for different
cases. Therefore, it seems more appropriate to do the analysis a posteriori.

17By that, we compare every sphere with every other sphere.
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{
for (

int iicylinder = icylinder + 1;
iicylinder < nAllCylinders;
iicylinder ++)

{
if (

allCylinders[icylinder ]. transform.position ==
allCylinders[iicylinder ]. transform.position)

{
allCylinders[iicylinder ]. GetComponent <Renderer >(). enabled =

false;
}

}
}
}
}

2.8 Camera

The user can use their mouse (with the right button pressed) to orbit the camera around
the scenery.

2.8.1 OrbitCamera

For this purpose, we attach the OrbitCamera script
using UnityEngine;
public class OrbitCamera : MonoBehaviour
{

to the default camera object and declare and define the initial distance of the camera
from the origin
float distance = 2f;

the constant factors translating the mouse (scroll) speed to the orbit angles and the
zoom rate
readonly float speed_x = 1f;
readonly float speed_y = 1f;
readonly float speed_zoom = 2f;

and the constant distance limits:
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readonly private float distance_min = 2f;
readonly private float distance_max = 5f;

Finally, we initialize the orbit angles:
azimuth: left and right in the x-z-plane
elevation: up and down with respect to the x-z-plane
private float azimuth = 30f;
private float elevation = 30f;

In every simulation step
void LateUpdate ()
{

we check if the user pressed the right mouse button
if (Input.GetMouseButton (1))
{

in which case we in- or decrease the orbit angles according to the mouse position change:
azimuth += Input.GetAxis("Mouse X") * speed_x;
elevation -= Input.GetAxis("Mouse Y") * speed_y;

}

With the help of Unity we compute the quaternion representation of the current atti-
tude from the Euler angles:
Quaternion rotation = Quaternion.Euler(elevation , azimuth , 0);

We use a scroll wheel input to alter the distance of the camera from the origin and limit
it to the already declared limits:
distance =
Mathf.Clamp(distance - Input.GetAxis("Mouse ScrollWheel")
* speed_zoom , distance_min , distance_max );

Using the negative distance as its z-component, we define the position vector in the local
camera coordinate system:
Vector3 neg_distance = new Vector3 (0.0f, 0.0f, -distance );

Since we need the position of the camera in the global coordinate system, we have to
transform the position vector from the local camera system to the global world system.
Unity makes this very easy: The multiplication operator of a quaternion object is
overloaded, enabling us to multiply a quaternion and a 3D vector, just like we would
multiply a transformation matrix with the vector, while at the same time avoiding the
gimbal lock problem [7] with the Euler angles in the transformation matrix:
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Vector3 position = rotation * neg_distance;

Finally, we transfer the new attitude and position to the actual camera:
transform.rotation = rotation;
transform.position = position;
}
}

2.9 Lights

For the illumination of the scene, we introduce six Directional Light GameObjects
(figure 2.24)

Figure 2.24: Six directional lights

pointing in all positive and negative axis directions (figure 2.25) leading to quite realistic
shadows and reflections (figure 1.1).

Figure 2.25: Directions of the lights

We achieve the different light directions by rotating the default light - pointing in the
positive z-direction (figure 2.26a) - about appropriate axes (e. g. figure 2.26b).
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(a) Light in positive z-direction (b) Light in negative z-direction

Figure 2.26: Lights in positive and negative z-directions

Interestingly, the positions of the lights do not matter at all. Even if we leave them all
at their default positions at the origin (figure 2.26), the faces of the hypercube are also
illuminated “on the outside”.
It is very important that the Pixel Light Count parameter in Unity’s Edit | Project
Settings | Quality | Rendering menu must be greater or equal the number of lights that
illuminate the scene; otherwise some cubes might look darker than others from certain
angles. Since we use six directional lights, we have to set Pixel Light Count to a minimum
of 6.

Figure 2.27: Pixel Light Count must correspond to the number of lights.
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A Rotation matrices

The German Wikipedia [9] demonstrates the computation of the n-dimensional rota-
tion matrix R that rotates an n-dimensional vector about an (n− 2)-dimensional fixed
hyperspace1. The invariant2 plane in which the rotation takes place is defined by two
orthogonal unit vectors g1 and g2.
We define two matrices V and W using outer products3 of the span vectors g1 and g2

V = g1 ⊗ g1 + g2 ⊗ g2 (A.1)
W = g1 ⊗ g1 − g2 ⊗ g1 (A.2)

A rotation matrix R that rotates by the rotation angle α in the g1-g2-plane in Rn is
then defined as

R = In + (cos(α)− 1) · V + sin(α) ·W (A.3)
where In is the n-dimensional identity matrix

In =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1



A.1 Matlab program rotation_matrix

We utilize equation (A.3) in the Matlab function
function R = rotation_matrix (dimension , index_1 , index_2)

1Points in the fixed hyperspace are not affected by the rotation.
2Points in the invariant plane are rotated into other points in the same plane.
3The outer product of two vectors u =

[
u1 u2 · · · um

]T and v =
[
v1 v2 · · · vn

]T is defined
[8] as the matrix

u⊗ v = uvT =


u1
u2
...

um

 · [v1 v2 · · · vn
]

=


u1v1 u1v2 · · · u1vn
u2v1 u2v2 · · · u2vn

...
...

. . .
...

umv1 umv2 · · · umvn


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Appendix A. Rotation matrices A.2. Rotations in R2

to compute the rotation matrix R from the dimension of the requested hyperspace and
the indices (index_1 and index_2) of the invariant plane in which the rotation should
take place.
Inside the function we declare the rotation angle as a symbolic variable
alpha = sym (’alpha ’);

and define the n-dimensional identity matrix:
I = eye (dimension );

The indices index_1 and index_2 pick corresponding column vectors of the identity
matrix as the orthogonal unit vectors g1 and g1 defining the invariant plane:
g_1 = I(:, index_1 );
g_2 = I(:, index_2 );

Using the unit vectors, we compute the matrices V and W according to equations (A.1)
and (A.2)
V = g_1 * g_1 ’ + g_2 * g_2 ’;
W = g_1 * g_2 ’ - g_2 * g_1 ’;

and finally use equation (A.3) to return the rotation matrix:
R = I + (cos (alpha) - 1) * V + sin (alpha) * W;
end

A.2 Rotations in R2

In the 2D-plane a vector has only two coordinates

a2 =
[
x
y

]

The Matlab function call
rotation_matrix (2, 2, 1)

returns the well-known 2-dimensional rotation matrix

R(α) =
[
cosα − sinα
sinα cosα

]

that rotates the x-axis (first column of the 2-dimensional identity matrix)

g1 =
[
1
0

]
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Appendix A. Rotation matrices A.3. Rotations in R3

counterclockwise (mathematically positive) into the y-axis (second column of the 2-
dimensional identity matrix

g2 =
[
0
1

]
if α = π

2

g2 = R
(
π

2

)
· g1

=
cos

(
π
2

)
− sin

(
π
2

)
sin

(
π
2

)
cos

(
π
2

)  [1
0

]

=
[
0 −1
1 0

] [
1
0

]

=
[
0
1

]

In R2, the (n− 2)-dimensional fixed hyperspace is just the 0-dimensional origin.
If we exchanged the order of the span vectors g1 and g1 by calling
rotation_matrix (2, 1, 2)

the function would return the inverse (transposed) matrix

R−1(α) = RT (α) =
[

cosα sinα
− sinα cosα

]

that would perform an undesirable clockwise (mathematically negative) rotation, e. g.
rotating the y-axis into the x-axis:

g1 = RT
(
π

2

)
· g2

=
 cos

(
π
2

)
sin

(
π
2

)
− sin

(
π
2

)
cos

(
π
2

) [0
1

]

=
[

0 1
−1 0

] [
0
1

]

=
[
1
0

]

A.3 Rotations in R3

In 3D space, a vector has three coordinates:

a3 =

xy
z


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A.3.1 Rotation matrix Rx

The Matlab function call
rotation_matrix (3, 3, 2)

returns a 3-dimensional rotation matrix about the x-axis

Rx(α) =

1 0 0
0 cosα − sinα
0 sinα cosα


that rotates the y-axis (second column of the 3-dimensional identity matrix)

g1 =

0
1
0


counterclockwise (mathematically positive) into the z-axis (third column of the 3-dimensional
identity matrix

g2 =

0
0
1


if α = π

2 :

g2 = Rx

(
π

2

)
· g1

=


1 0 0
0 cos

(
π
2

)
− sin

(
π
2

)
0 sin

(
π
2

)
cos

(
π
2

)

0

1
0



=

1 0 0
0 0 −1
0 1 0


0

1
0



=

0
0
1


In R3, the (n− 2)-dimensional fixed hyperspace is a 1-dimensional straight line. In the
case of Rx, the x-axis is the fixed rotation axis; all points on the x-axis stay in place:1 0 0

0 cosα − sinα
0 sinα cosα


x0

0

 =

x0
0


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The y-z-plane (together with all its parallel planes) is orthogonal to the fixed x-axis and
is called the invariant plane because every point in the y-z-plane is rotated into another
point in the y-z-plane1 0 0

0 cosα − sinα
0 sinα cosα


0
y
z

 =

 0
y cosα− z sinα
y sinα + z cosα



A.3.2 Rotation matrix Ry

The rotation about the fixed y-axis (rotating the z-axis into the x-axis by α = π
2 ) is

computed by
rotation_matrix (3, 1, 3)

resulting in

Ry(α) =

 cosα 0 sinα
0 1 0

− sinα 0 cosα



A.3.3 Rotation matrix Rz

The rotation about the fixed z-axis (rotating the x-axis into the y-axis by α = π
2 ) is

computed by
rotation_matrix (3, 2, 1)

resulting in

Rz(α) =

cosα − sinα 0
sinα cosα 0

0 0 1



A.4 Rotations in R4

In 4D hyperspace, a vector has four4 coordinates

a4 =


x
y
z
w



4We introduce w as the fourth coordinate.
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A.4.1 Rotation matrix Rxy

The Matlab function call
rotation_matrix (4, 4, 3)

returns a 4-dimensional rotation matrix about the x-y-plane5

Rxy(α) =


1 0 0 0
0 1 0 0
0 0 cosα − sinα
0 0 sinα cosα

 (A.4)

that rotates the z-axis (third column of the 4-dimensional identity matrix)

g1 =


0
0
1
0


counterclockwise6 into the w-axis (fourth column of the 4-dimensional identity matrix

g2 =


0
0
0
1



5Most/all(?) human beings cannot imagine a fourth direction (ana/kata) orthogonal on all of our
three standard directions (left/right, up/down, back/forth). As a consequence, we cannot imagine
a rotation about a plane.

6The expression “counterclockwise” presumes that we look at the rotation plane from a certain point
of view into a certain direction. In 2D, this is not a problem; there is just the one x-y-plane we look
at. In 3D, we look into the negative direction of the third axis which is the normal vector of the
plane: If the rotation takes place in the x-y-plane we look into the negative z-direction. And in 4D?
There is a third and a fourth axis, both of them orthogonal to the rotation plane. Therefore, the
rotation plane does not have a single normal vector but an orthogonal plane spanned by the third
and fourth axis. There is no cross product of two 4D vectors. How do we define “counterclockwise”
now? From where and into which direction do we look at the rotation plane? It seems useful to call
a 4D rotation matrix “counterclockwise” or “positive” if it rotates an axis into “the next” axis for a
rotation angle of π2 : x→ y, y → z, z → w, w → x.
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if α = π
2

g2 = Rxy

(
π

2

)
· g1

=


1 0 0 0
0 1 0 0
0 0 cos

(
π
2

)
− sin

(
π
2

)
0 0 sin

(
π
2

)
cos

(
π
2

)



0
0
1
0



=


1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 0




0
0
1
0



=


0
0
0
1


In R4, the (n− 2)-dimensional fixed hyperspace is a 2-dimensional plane. In the case of
Rxy, the x-y-plane is the fixed rotation plane; all points in the x-y-plane stay in place:

1 0 0 0
0 1 0 0
0 0 cosα − sinα
0 0 sinα cosα



x
y
0
0

 =


x
y
0
0


The z-w-plane (together with all its parallel planes) is orthogonal to the fixed x-y-plane
and is called the invariant plane because every point in the z-w-plane is rotated into
another point in the z-w-plane

1 0 0 0
0 1 0 0
0 0 cosα − sinα
0 0 sinα cosα




0
0
z
w

 =


0
0

z cosα− w sinα
z sinα + w cosα


There are three more 4D rotations that rotate an axis into “the next one”:

A.4.2 Rotation matrix Ryz

The rotation about the fixed y-z-plane (rotating the w-axis into the x-axis by α = π
2 ) is

computed by
rotation_matrix (4, 1, 4)

resulting in

Ryz(α) =


cosα 0 0 sinα

0 1 0 0
0 0 1 0

− sinα 0 0 cosα

 (A.5)
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A.4.3 Rotation matrix Rzw

The rotation about the fixed z-w-plane (rotating the x-axis into the y-axis by α = π
2 ) is

computed by
rotation_matrix (4, 2, 1)

resulting in

Rzw(α) =


cosα − sinα 0 0
sinα cosα 0 0

0 0 1 0
0 0 0 1



A.4.4 Rotation matrix Rxw

The rotation about the fixed x-w-plane (rotating the y-axis into the z-axis by α = π
2 ) is

computed by
rotation_matrix (4, 3, 2)

resulting in

Rxw(α) =


1 0 0 0
0 cosα − sinα 0
0 sinα cosα 0
0 0 0 1



A.4.5 Rotation matrix Rxz

The remaining two 4D rotation matrices are a bit tricky:
The rotation about the fixed x-z-plane is computed by
rotation_matrix (4, 4, 2)

resulting in

Rxz(α) =


1 0 0 0
0 cosα 0 − sinα
0 0 1 0
0 sinα 0 cosα

 (A.6)

This matrix rotates the y-axis (second column of the 4-dimensional identity matrix)

g1 =


0
1
0
0


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into the w-axis (fourth column of the 4-dimensional identity matrix)

g2 =


0
0
0
1


if α = π

2 :

g2 = Rxz

(
π

2

)
· g1

=


1 0 0 0
0 cos

(
π
2

)
0 − sin

(
π
2

)
0 0 1 0
0 sin

(
π
2

)
0 cos

(
π
2

)



0
1
0
0



=


1 0 0 0
0 0 0 −1
0 0 1 0
0 1 0 0




0
1
0
0



=


0
0
0
1


On the other hand, the inverse matrix, computed by
rotation_matrix (4, 2, 4)

resulting in

R−1
xz (α) = RT

xz(α) =


1 0 0 0
0 cosα 0 sinα
0 0 1 0
0 − sinα 0 cosα


rotates the w-axis (fourth column of the 4-dimensional identity matrix)

g1 =


0
0
0
1


into the y-axis (second column of the 4-dimensional identity matrix)

g2 =


0
1
0
0


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if α = π
2 :

g2 = RT
xz

(
π

2

)
· g1

=


1 0 0 0
0 cos

(
π
2

)
0 sin

(
π
2

)
0 0 1 0
0 − sin

(
π
2

)
0 cos

(
π
2

)



0
0
0
1



=


1 0 0 0
0 0 0 1
0 0 1 0
0 −1 0 0




0
0
0
1



=


0
1
0
0


Since the y-axis and the w-axis are not adjacent to each other (the “next” axis of the
y-axis is the z-axis and the “next” axis of the w-axis is the x-axis) there is no reason to
prefer Rxz to R−1

xz . In this case, our definition of “anticlockwise” is not applicable.

A.4.6 Rotation matrix Ryw

The same dilemma exist for the remaining rotation matrix Ryw. We arbitrarily choose
rotation_matrix (4, 3, 1)

resulting in

Ryw(α) =


cosα 0 − sinα 0

0 1 0 0
sinα 0 cosα 0

0 0 0 1


for the rotation about the fixed y-w-plane (rotating the x-axis into the z-axis by α = π

2 ).

A.4.7 Rotation matrix Rxyzw

In 4D, we can concurrently rotate about two independent planes by multiplying the
corresponding rotation matrices. Therefore, the matrix that concurrently rotates about
the x-y-plane and the z-w-plane is computed as the product of Rxy and Rzw:
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Rxyzw(α, β) = Rxy(α) ·Rzw(β)
= Rzw(β) ·Rxy(α) (A.7)

=


1 0 0 0
0 1 0 0
0 0 cosα − sinα
0 0 sinα cosα

 ·


cos β − sin β 0 0
sin β cos β 0 0

0 0 1 0
0 0 0 1



=


cos β − sin β 0 0
sin β cos β 0 0

0 0 cosα − sinα
0 0 sinα cosα


In contrast to the 3D case, where the sequence of the rotations about two axes is im-
portant (Rx ·Ry 6= Ry ·Rx), the product of two independent 4D rotation matrices is
commutative7 (equation (A.7)).

A.4.8 Rotation matrix Rxzyw

In a similar way, the matrix that concurrently rotates about the x-z-plane and the
y-w-planes is computed as the product of Rxz and Ryw:

Rxzyw(α, β) = Rxz(α) ·Ryw(β)

=


1 0 0 0
0 cosα 0 − sinα
0 0 1 0
0 sinα 0 cosα

 ·


cos β 0 − sin β 0
0 1 0 0

sin β 0 cos β 0
0 0 0 1



=


cos β 0 − sin β 0

0 cosα 0 − sinα
sin β 0 cos β 0

0 sinα 0 cosα



7In the 3D case, we only have a single 1 in each rotation matrix. In the 4D case, every single rotation
matrix contains a two-dimensional identity matrix block that is “substituted” by the trigonometric
functions of the “other” rotation. From a more abstract point of view: In 3D, there cannot be two
independent invariant planes in which the rotation takes place, according to the first paragraph of
appendix A. In 4D, we can define two sets of unit span vectors g1, g2, and g3, g4, all orthogonal to
each other, defining two independent invariant planes.
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B SteamVR

Unity makes it very easy to develop for different platforms. To interact with the
hypercube using a Virtual Reality headset (Valve Index, Oculus Rift, . . . ), all we have
to do is to import the SteamVR library into the HypercubeScript

using Valve.VR;

and set the platform to Windows (figure B.1)

Figure B.1: SteamVR build settings

Additionally, we define a few SteamVR input actions like RotateHypercube4D, UnfoldHypercube,
and Autorotate (figure B.2)
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Figure B.2: SteamVR input actions

and replace the keyboard and mouse interactions with the corresponding controller in-
puts. We define controller button push inputs in the Update method
private void Update ()
{
if (SteamVR_Input.GetStateDown(

"Reset", SteamVR_Input_Sources.RightHand ))
{

ResetHypercubeRotation ();
}

if (SteamVR_Input.GetStateDown(
"Visibility", SteamVR_Input_Sources.RightHand ))

{
visibility = (visibility + 1) % 5;

}
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if (SteamVR_Input.GetStateDown(
"Autorotate", SteamVR_Input_Sources.LeftHand ))

{
autorotate = !autorotate;

}
}

and controller thumbstick inputs in the FixedUpdate method:
private void FixedUpdate ()
{
angleYW += SteamVR_Input.GetVector2(

"RotateHypercube4D", SteamVR_Input_Sources.RightHand ).x / 200f;

angleXY += SteamVR_Input.GetVector2(
"RotateHypercube4D", SteamVR_Input_Sources.RightHand ).y / 200f;

angleUnfold += SteamVR_Input.GetVector2(
"UnfoldHypercube", SteamVR_Input_Sources.LeftHand ).y / 200f;

Instead of the mouse controlled camera orbiting (section 2.8), we use a 4D rotation
about the y-w-plane in VR, which has a “similar” effect:
for (

int iHypercubeVertex = 0;
iHypercubeVertex < nHypercubeVertices;
iHypercubeVertex ++)

{
hypercubeVertices[iHypercubeVertex] =

RotationYW(angleYW) *
hypercubeVerticesOriginal[iHypercubeVertex ];

hypercubeVertices[iHypercubeVertex] =
RotationXY(angleXY) *
hypercubeVertices[iHypercubeVertex ];

}

That’s all, Folks!
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