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When Karl Sims did his award-winning computer animation ” Particle Dreams” twenty/(!)
years ago, he tortured a Connection Machine CM-2 computer with as many as 65,536
processors, using one processor for the simulation of each particle.

Figure 1: 1988 Computer Animation ”Particle Dreams” [9]

Today we simulate tens of thousands of particles in real-time on a single cpu (Figure 2)
— even in a browser plugin (Figure 3) — and advanced particle systems have become
common practice for the simulation of snow, rain, dust, smoke, fire, and explosions in
most computer games. Modern simulation environments like Processing [3] can be used
to produce such astonishingly addicting games as Falling Sand Game [6], sodaplay [10],
BallDroppings [7], and Souptoys [13].

In 2006, Traer Bernstein [2] wrote a pretty impressing particle physics library for Process-
ing, which actually was the inspiration for this particle system toolbox in MATLAB. As
a matter of fact, object oriented programming in MATLAB is not really the fastest lane
on the particle system highway; we are back at the good old days of some ten or twenty
real-time particles. But — the main purpose of this toolbox has never been to develop
state-of-the-art computer games; it was rather planned as an educational, interactive
learning-by-doing playground, with the aim to understand the mechanical interactions
(and maybe the mathematical background) of the particle system components. Have
fun!
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1 Genesis

The main purpose of this section is to give you a brief overview on how particles, springs,
and attractions are created and implemented into the particle system.

1.1 Particle System Creation

Every particle system simulation begins with the creation of a particle system object'
that maintains and manages all particles, springs, and attractions

>> Particle_System = particle_system

gravity: [0 O 0]

drag: O
particles: []
springs: []
attractions: []
time: O

graphics_handle: 1

The command particle_system opens an empty 3-D axes in a maximized window and
creates an empty particle system with default properties

e Acceleration due to gravity: [O 0 0}
e Aerodynamic/fluid resistance (drag): 0

o Axes limits: £1

After the creation of the particle system object its properties can be defined

>> gravity = [0 0 -9.81];

and set

>> Particle_System.gravity = gravity

gravity: [0 0 -9.8100]

drag: O
particles: []
springs: []
attractions: []
time: O

graphics_handle: 1

1 As a convention throughout this toolbox, MATLAB objects names begin with uppercase letters.



In many cases it might be more convenient to set all three particle system properties
(gravity, drag, and limits) directly during the creation of the object

>> Particle_System = particle_system ([0 O -9.81], 0, 1)

gravity: [0 0 -9.8100]

drag: O
particles: []
springs: []
attractions: []
time: O

graphics_handle: 1

1.2 Particle Creation

A particle object with default properties is created and incorporated into the parti-
cle system by the particle command using the particle system (handle) as its only
parameter

>> Particle = particle (Particle_System)
mass: 1

position: [0 O 0]
velocity: [0 O 0]

fixed: O
lifespan: Inf
age: O

force: [0 0 0]
graphics_handle: 191.0077

Again, the particle properties (mass, initial position and velocity, fixed/free, and life-
span) can either be set individually with an existing particle object

>> Particle.mass = 42
mass: 42

position: [0 O 0]

or at once during the creation of the object

>> Particle = particle
(Particle_System, 42, [0 O 0], [0 O 0], false, inf)

mass: 42



position: [0 O 0]

The particle is automatically incorporated into the particle system and a red dot (sym-
bolizing the particle) is drawn in the axes of the particle system. After its creation, the
color (or any other property) of the graphical particle representation can be modified by
means of its graphics handle

set (Particle.graphics_handle, ’color’, ’blue’);

1.3 Spring Creation

A default spring between two already existing particles Particle_1 and Particle_2 is
created and incorporated into the particle system via

>> Spring = spring (Particle_System, Particle_1, Particle_2)

particle_1: [1x1 particlel
particle_2: [1x1 particlel

rest: 1
strength: 1
damping: O

graphics_handle: 195.0077
Again, the long version directly sets the rest length and the strength of the spring and
the damping coefficient of an additional damper parallel to the spring
>> Spring = spring

(Particle_System, Particle_1, Particle_2, 2, 1, 0)

particle_1: [1x1 particlel
particle_2: [1x1 particle]

rest: 2
strength: 1
damping: O

graphics_handle: 196.0077

The default graphical representation of a spring is a solid blue line between the corre-
sponding particles.



1.4 Attraction Creation

Just like a spring, an attraction (force) connects two particles

>> Attraction = attraction
(Particle_System, Particle_1, Particle_2)

particle_1: [1xl1 particlel

particle_2: [1xl1l particlel
strength: 1
minimum_distance: O

graphics_handle: 198.0077

Its properties are the gravitational attraction strength (which can be made negative for
a repulsion) and the minimum distance, below which the attraction force will not grow
any further. Analogous to the particle and the spring, the following attraction uses are
valid syntax

>> Attraction = attraction
(Particle_System, Particle_1, Particle_2, 1, 0);

>> Attraction.minimum_distance = 0.1;
>> strength = Attraction.strength;
>> set (Attraction.graphics_handle, ’visible’, ’off’);

An attraction is graphically represented by a dotted blue line.

1.5 Simulation

After at least one particle has been thrown into life, the simulation can be started

step_time = 0.01;

for i = 1 : inf
Particle_System.advance_time (step_time);

end

Since inf has been used as the upper bound of the for-loop, the simulation can only
be stopped by Ctrl-C or by closing the corresponding figure window. In the loop, every
call to advance_time integrates the underlying nonlinear differential equation system

10



one single time step further, the length of which is defined in the variable step_time.
Decreasing step_time makes the simulation smoother and more exact, but also slower;
increase step_time to make the particles move faster. If you get too greedy speed-wise,
the simulation becomes bumpier and finally unstable. In the simulation loop the current
position of the mouse pointer can be determined

current_point = mean (get (gca, ’currentpoint’));

and e. g. used to move’ certain particles ”by hand”

Particle.position = current_point;

2 Actually, the command does not directly move the graphical particle representation, but only sets the
position property of the particle object. The corresponding graphics object is then automatically
updated during the next simulation cycle.
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2 Demos

It might be a good idea to read through the demos in chronological order, since the grade
of general parameter explanation detailedness is higher in the first demo descriptions.

2.1 Demo 1: Free Fall

The first — pretty boring — demo simulates the free fall of a single mass in a gravity
field. After the creation of a default particle system (no drag, unit limits) with ”earthy”
gravity

Particle_System = particle_system;
gravity = [0 0 -9.81];
Particle_System.gravity = gravity

the default 3-D view is reduced to two dimensions
view (0, 0);
A single particle with default properties (unit mass, initial position at the origin, no

initial velocity, not fixed, infinite lifespan) is created and incorporated into the particle
system

Particle = particle (Particle_System);

A step time of 1 millisecond seems to produce a smooth and visually traceable particle
motion on a 3 GHz computer’:

step_time = 0.001;

Finally, the most simple form of a simulation loop can be used

for i = 1 : 451
Particle_System.advance_time (step_time);
end

Choosing 451 as the number of steps makes the simulation stop when the particle reaches
the lower axes limit”.

3If you use a faster machine, you might want to reduce the step time (and v.v.).
4The junior high proof is up to the reader ...

12
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Figure 8: Free fall

As you might have expected, the unspectacular simulation (Figure 8) shows a red dot
falling down with (linearly) increasing velocity.

2.2 Demo 2: Bullet Time

The second demo simulates the motion of a bullet in zero gravity with aerodynamic
resistance’. The few lines of source code are very similar to the first demo. Create a
particle system with no gravity but a drag coefficient of 10 and set the view to 2D

Particle_System = particle_system ([0, O, 0], 10, 1);

view (0, 0);

Position a particle on the left edge (1) of the axes and give it an initial velocity of 20
to the right

Particle = particle
(Particle_System, 1, [-1, 0, 0], [20, O, 0], false, inf);

Simulate infinitely long with a step time of 1 millisecond

step_time = 0.001;
for i = 1 : inf
Particle_System.advance_time (step_time);

end

°Can you imagine an environment (or a movie title) where this experiment could take place?
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The simulation depicted in Figure 9 produces the same low level of enthusiasm as the
previous demo.

1 1 1
0.5 0.5 0.5-
0.4 0 . 0 °
-0.5 -0.5 -0.5
-1 -1 -1
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
() t=0 (b) t = 0.1 () t=1

Figure 9: Bullet time

The "bullet” starts with initial kinetic energy at the left hand side of the axes (Iig-
ure 9a), becomes slower and slower due to the aerodynamic resistance (Figure 9b) until
it comes to a complete’ stop at the right hand side, when all of its energy has been
dissipated (Figure 9c).

2.3 Demo 3: Bungee Jumping

Wikipedia defines bungee jumping as

an activity in which a person jumps off from a high place (generally of several
hundred feet /meters) with one end of an elastic cord attached to his/her body
or ankles and the other end tied to the jumping-off point.

Well, what do you need for a half-decent bungee jumping simulation? The jumping
person is just a free particle with a certain mass and the elastic cord can be modeled
by a spring between the jumper and another (hopefully fixed) ”particle”. Add some
aerodynamic resistance and a bit of spring damping and the jump will look quite realistic.
In order to open up the second dimension, the jumping-off point should not equal the
fixed chord end point’.

< (Genesis_mode_on >

6 Actually, the bullet will not really stop before Judgment Day, but its velocity will rapidly become
too small to be visually detected.

"Besides, this overcomes the problem that a spring (but not a bungee chord) produces a pressing force
if its length is less than its rest length. A similar real-world effect that cannot easily be modeled by
a simple spring is the fact that the first part of the jump is actually a free fall where the chord does
not produce any force at all.

14



In the beginning The User created the particle system and the particles. And The
User said, Let there be gravity and aerodynamic resistance, and there was gravity and
aerodynamic resistance

Particle_System = particle_system ([0, O, -9.81], 5, 200);

The User saw all that he had made, and it was very good (even in 2D)
view (0, 0);

< Scienti fic.mode_on >

The first particle acts as the anchor point the chord is "tied to”. Its initial position
is fixed (true) somewhere in the upper half of the axes ([0, 0, 150]) and it has an
infinite life span®. Since the particle is fixed and does not move, its mass is completely
irrelevant”’. The default graphical representation of a fixed particle is a red asterisk

Particle_1 = particle
(Particle_System, 1, [0, O, 150], [0, O, 0], true, inf);

The second particle represents the jumper. It should have a reasonable mass'’ and an

initial position at the height of the first particle, with a horizontal offset equalling the
rest length of the spring

Particle_2 = particle

(Particle_System, 70, [100, O, 150], [0, O, 0], false, inf);
The two particles are now used to define both ends of the spring to be created
Spring = spring

(Particle_System, Particle_1, Particle_2, 100, 6, 0.1);

The spring has a rest length'' of 100, a strength'? of 6, and a damping factor'® of
0.1. To make the graphical representation (which is a solid blue line by default) look a
bit more like a real spring, you can increase its line width and change its line style to
dotted

set (Spring.graphics_handle, ’linewidth’, 10, ’linestyle’, ’:7)

The particle system is now ready to be pushed into life

8If you feel a strong urge to act out your sadistic touch, you could reduce the life span of the first
particle to e.g. 42 and see what happens to the jumper...

9Nevertheless, in order to avoid ”Divide by zero” warnings, the mass of a particle should never be
Z€ro.

10¥es, 70 is a reasonable mass for an adult in the SI metric system.

"Rest length: Length of a spring producing no force

12Gtrength: Deflection-dependent force coefficient

BDamping: Velocity-dependent force coefficient

15



step_time = 0.1;
for i = 1 : inf

Particle_System.advance_time (step_time);

end
200 200 2001
150 KT @ 150F * 150+ *
100 100f £ 100 =
50 50 £ 50t z
0 0 = 0 E
-50 -501 5 -501 .
-100 -100F = _100}
~180 ~150 E ~150¢
[
%00 100 0 100 200 “2%00 100 0 100 200 2% 100 0 100 200
(a)t=0 (b) t =12 (c) t =200

Figure 10: Bungee jumping

Departing from Figure 10a with a relaxed spring, the free particle is accelerated down-
wards in the gravity field and immediately to the left by the horizontal component of
the spring force. At about 12sec, it reaches its lowest point (Figure 10b) and is driven
back up by the extended spring. After a few more vertical and horizontal oscillations
the atmospherical and the spring damping have eaten up all kinetic energy. Figure 10c¢
shows the ”final” steady state, where the weight of the particle and the spring force are
in equilibrium.

2.4 Demo 4: Gimme ya Energy!

This demo does not offer too many new insights, compared to the previous one; it is
just a nice two-masses-two-springs experiment, where a big particle sucks energy from a
smaller one (just like in real life. .. ). There is no gravity nor drag in this environment

Particle_System = particle_system ([0, O, 0], 0, 3);

The first particle is just a nail in the middle of a wall, where you can later on fix the
first spring

Particle_1 = particle
(Particle_System, 1, [0, O, 0], [0, O, O], true, inf);

16



The second particle is free and has a bigger mass (10)

Particle_2 = particle
(Particle_System, 10, [1, O, 0], [0, O, 0], false, inf);

which can also be graphically represented

set (Particle_2.graphics_handle, ’markersize’, 60);

The third particle is smaller (1) than the second one, but has an initial velocity (5)
driving it upwards
Particle_3 = particle

(Particle_System, 1, [2, O, 0], [0, O, 5], false, inf);

Finally we create two identical springs with a strength of 10 and a damping factor of 1;
one spring between the (fixed) first particle and the second particle

Spring_1 = spring

(Particle_System, Particle_1, Particle_2, 1, 10, 1);
and another spring between the second and the third particle

Spring_2 = spring

(Particle_System, Particle_2, Particle_3, 1, 10, 1);
Ready to rumble

step_time = 0.1;
for i = 1 : inf
Particle_System.advance_time (step_time);

end

The snapshot in Figure 11 a shows the initial positions of both particles and springs. The
initial velocity of the small particle that will move it upwards in the next simulation steps
is not directly visible. On its way up, the small particle exerts a force through the spring
on the big particle; but due to the inertia of the big particle, at first, the small particle
rotates about the big one (Figure 11b). During its rotations, the small particle transfers
more and more energy to the big particle, until finally the latter is rotating so fast about
the fixed particle that the small particle is not able to do full rotations about the big
one any more (Figure 11¢).

17
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Figure 11: Gimme ya energy!

2.5 Demo 5: Magic Chain Cable

If you take a bunch of particles, arrange them in one long row and connect them with
springs, you end up with something like a worm, a rope, a rubber band, a pearl necklace,
or a chain cable — depending on the number of particles and the parameters you choose
for mass, spring strength, damping, . .. Define some gravity (-1), a bit of drag (0.1) and
an ample axes (10)

Particle_System = particle_system ([0, O, -1], 0.1, 10);
The number of particles (and the corresponding number of springs) directly determine
the speed of the simulation. A single core 3 GHz machine running MATLAB object

oriented programming would be hopelessly overextended even with a hundred particles.
Therefore

n_particles = 20;

Next, the 20 particles are created and incorporated into the particle system

for i = 1 : n_particles

Particles{i} = particle
(Particle_System, 0.2, [0, O, 0], [0, O, 0], false, inf);

if i == 1 || i == n_particles
Particles{i}.fixed = true;
end
end

18



Additionally, the first and the last particle of the chain are declared as ”fixed”. This is
useful, because their motion should not be influenced by the other particles, but will be
externally modified in the simulation loop. The particles are connected by pretty stiff
(100) springs with unit length (1) and a reasonable damping factor (4)

for i = 1 : n_particles - 1

Spring{i} = spring
(Particle_System, Particles{i}, Particles{i + 1}, 1, 100, 4);

end

Let the games begin

step_time = 0.05;
for i = 1 : inf

Particles{1}.position = ...
[10¥sin(0.01%1i), 10*sin(0.011%i), 10*sin(0.012%i)];

Particles{n_particles}.position = ...
[-10*sin(0.013*i), 10*sin(0.014%*i), -10*sin(0.015%i)];

Particle_System.advance_time (step_time);
end

In the simulation loop the first (Particles{1}) and last (Particles{n_particles})
particles are permanently moved by altering their position property. Both end particles
are driven by slow, slightly distorted, harmonic oscillators with an amplitude of 10 in
all three spacial dimensions. As a result, the particles seem to float randomly through
the axes cube.

Since all particles have their initial positions at the origin, all you can see in Figure 12 a is
one red dot. The springs are not visible at all; they are all compressed to zero length and
therefore exert expanding forces on the particles immediately. In Figure 12b the sine
generators have moved the end particles apart and the springs have reached their rest
length. Since the distance between the end particles is much smaller than the number
of (unit) springs, the chain is not tense but relaxed in a random pattern. After the
end particles have been forced into different vertices of the axes cube (Figure 12¢), the
length of the chain is greater than the sum of the spring rest lengths, straightening the
chain and extending every single spring.

19
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Figure 12: Magic chain cable

2.6 Demo 6: Heavy Chain Mail

This demo is an attempt'* to simulate the motion of a medieval knight’s heavy chain
mail. With adapted particle and spring parameters, other types of cloth can be simulated
as well. To make things look realistic, there has to be some gravity (-0.4) and a little
bit of drag (0.1)

Particle_System = particle_system ([0, O, -0.4], 0.1, 5);
view (0, 0);

For a more detailed view the axes limits have to be readjusted

axis ([0, 6, -1, 1, 0, 61);

Again, we are talking about MATLAB object oriented programming; so let’s not over-
strain the CPU and restrict ourselves to 25 particles, arranged in a square matrix-like
structure of 5 rows by 5 columns

for col =1 : 5
for row =1 : b5

Particles{row, col} = particle
(Particle_System, 1, [col, 0, row], [0, O, 0], false, inf);

if row == 5 && col == 1 || row == 5 && col == 5

Particles{row, col}.fixed = true;

MTraer Bernstein [2] can do that much better. . .

20



end
end

end

After their creation, the upper left (5" row, 1% column) and upper right (5" row,
5 column) particles are nailed (fixed) to the wall. Next, you have to create the
two-dimensional mesh by connecting every particle to its nearest neighbors with unit

length springs. This can be done in two similar steps; one double loop for the horizontal
springs

for col =1 : 4

for row =1 : 5

Springs_horizontal{row, col} = spring (Particle_System,
Particles{row, col}, Particles{row, col + 1}, 1, 100, 1);

end

end

and another one for the vertical springs

for col =1 : 5
for row =1 : 4

Springs_vertical{row, col} = spring (Particle_System,
Particles{row, col}, Particles{row + 1, coll}, 1, 100, 1);

end

end

The simulation loop looks pretty unspectacular

step_time = 0.1;
for i = 1 : inf
Particle_System.advance_time (step_time);

end
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Figure 13 a shows the initial state of the fabric; right before gravity starts sucking.
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Figure 13: Heavy chain mail

After 3sec (Figure 13b) most of the particles have reached their maximum deflection,
narrowing down the mean width of the texture. After a few oscillations (both horizon-
tally and vertically), the ”final steady” state of the web can be seen in Figure 13c.

2.7 Demo 7: Don’t Touch me!

The aim of this "outer space game” is to establish a circular orbit'® of the free particle
(planet) about the origin by moving the ”fixed” particle (sun) to the right position at the
right time. Problem: If the planet gets too close to the sun, the gravity force accelerates
it quickly outside the visible square (the major axis of the elliptic orbit becomes very
long). The particle system itself produces no gravity and no drag

Particle_System = particle_system ([0, O, 0], O, 10);

view (0, 0);
The first particle represents the "fixed” sun that will be moved by the mouse during the
simulation

Particle_1 = particle

(Particle_System, 1, [0, O, 0], [0, O, O], true, inf);
while the free planet is modeled by the second particle

Particle_2 = particle
(Particle_System, 1, [0, O, 0], [0, O, O], false, inf);

15Tn an orbit, gravitational attraction and centrifugal forces are in equilibrium.
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The gravitational attraction force between two masses is proportional to both masses
and reciprocally proportional to the square of their distance. The attraction strength'®
is set to 10 and the minimum distance (below which the attraction force will not grow
any further) is virtually set to zero (eps = 2.2204e-016)

Attraction = attraction
(Particle_System, Particle_1, Particle_2, 10, eps);

In the simulation loop, the current position of the mouse pointer is determined by the
currentpoint property of the axes which returns a matrix of two points. The two points
lie on the line that is perpendicular to the plane of the screen and passes through the
pointer. The 3-D coordinates are the points where this line intersects the front and back
surfaces of the axes volume. Therefore, even in 3-D the mean of both points can be used
to intuitively move the first particle (sun) to a new position

step_time = 0.02;

for i = 1 : inf
current_point = mean (get (gca, ’currentpoint’));
current_point (2) = 0;
Particle_1.position = current_point;

Particle_System.advance_time (step_time);
end

Keeping the second component of current_point at zero restricts the motion of the
particle to the visible plane (thank you, Wulf!). Since this is an interactive demo,
the situations depicted in Figure 14 depend on your own mouse pointer input and can
therefore not easily be reproduced.

Nevertheless, playfully learning how a close encounter with a star gives you fresh impetus,
can really be fun ...

2.8 Demo 8: Keep it up

If you switch on gravity and create a negative attraction between two particles (one
of which is glued to your mouse) you end up with something like a more-dimensional

16From the view of real-world physics, the ”attraction strength” between two masses is defined by big
G (the gravitational constant: G = 6.6742 - 10~ Nm?kg~?2), but it seems convenient to have an
additional attraction strength twiddle factor in a particle system.
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Figure 14: Don’t touch me!

variable-length inverted pendulum. The 2-D particle system provides gravity (-20) but
no drag (0)

Particle_System = particle_system ([0, O, -20], 0, 10);

view (0, 0)
Both particles are created at the origin; the first one will later be moved by the mouse
and should therefore be "fixed” (true)

Particle_1 = particle

(Particle_System, 1, [0, O, 0], [0, O, O], true, inf);

Particle_2 = particle
(Particle_System, 1, [0, O, 0], [0, O, O], false, inf);

An attraction with a negative attraction strength is a repulsion (like the force between
two equal electrical charges)

Attraction = attraction

(Particle_System, Particle_1, Particle_2, -100, eps);
In the simulation loop, the first particle follows the mouse pointer

step_time = 0.01;

for i = 1 : inf
current_point = mean (get (gca, ’currentpoint’));
current_point (2) = 0;
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Particle_1.position = current_point;
Particle_System.advance_time (step_time);
end

As always, the speed of the simulation is directly proportional to the step time. If the
default value of 0.01 does not really challenge your hand eye coordination and control
capabilities (visual comprehension, finger dexterity, and small motor competence), just
increase it ... [4]
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Figure 15: Keep it up

Figure 15 shows some — not really stunning — intermediate states of the author’s balanc-
ing act.

2.9 Demo 9: Catch me if you Can (There’s a Hole in the Bucket)

While the inverted pendulum demands constant control activity to keep the free particle
in the air, a "potential bucket” of three particles — arranged in the form of an equilateral
triangle (V-configuration, s. Figure 16) — should give the user a chance to "catch” a
fourth particle (the ball) and keep it in a steady state equilibrium; even in the presence
of proper gravity (-30) and with the help of some drag (1)

Particle_System = particle_system ([0, O, -30], 1, 10);

view (0, 0)

25



The three bucket particles and the ball particle are initially'” located at

-2 2 0 0
Pleft = 0 Pright =10 Pbottom =10 Pball = |0 (1)
2 2 0 5

Particle_left = particle
(Particle_System, 1, [-2, 0, 2], [0, O, O], true, inf);

Particle_right = particle
(Particle_System, 1, [2, 0, 2], [0, O, O], true, inf);

Particle_bottom = particle
(Particle_System, 1, [0, O, 0], [0, O, 0], true, inf);

Particle_ball = particle
(Particle_System, 1, [0, O, 5], [0, O, 0], false, inf);

In order to keep the ball in the air, there are strong repulsions (-100) from every bucket
particle to the ball

Attraction_1 = attraction
(Particle_System, Particle_left, Particle_ball, -100, eps);

Attraction_2 = attraction
(Particle_System, Particle_right, Particle_ball, -100, eps);
Attraction_3 = attraction

(Particle_System, Particle_bottom, Particle_ball, -100, eps);

In the simulation loop all three bucket particles are attached to the mouse pointer,
preserving their relative positions towards each other

step_time = 0.01;

for i = 1 : inf
current_point = mean (get (gca, ’currentpoint’));
current_point (2) = 0;

Particle_left.position = current_point + [-2 0 2];

17 As a matter of fact, the initial position of the bucket particles is absolutely irrelevant, since the whole
bucket is glued to the mouse pointer in the very first simulation step.
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Particle_right.position = current_point + [2 0 2];
Particle_bottom.position = current_point + [0 O 0];

Particle_System.advance_time (step_time);

end
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Figure 16: Catch me if you can

Catching a slow ball (reaching a steady state in Figure 16¢ after some bouncing oscilla-
tions in Figure 16b) is not too difficult, but if you do not decelerate a fast ball carefully
and symmetrically with the bottom particle, it will slip through the potential walls of the
bucket and get lost. The reason for this "hole in the bucket” is illustrated (Figure 17)
in the potential field of the initial particle configuration according to Equation 1.
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Figure 17: Potential field of the three-particle ”"bucket”
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You can clearly see the build-up of the potential walls towards the three particles, you can
also imagine a very shallow minimum at z = 0 and z = 1.5872 (marked by a red cross),
and you can definitely understand how the ball could easily decide to travel through one
of the lower side potential tunnels instead of rolling into the center equilibrium.

2.10 Demo 10: The Hose

How would you simulate water flowing out of a hosepipe? Well — what about an endless
stream of water particles (droplets), the direction of which you can control via the mouse
pointer? Sounds easy, but how can you solve the problem of the steadily increasing
number of living particles the simulation environment has to maintain? Just let’em die!
Every particle can be given a limited span of life. After that time span the particle
system automatically deletes the particle and all springs and attractions connected to
it. Since all particles are created during the simulation, the initialization block only has
to create a particle system with gravity (-10) and drag (1)

Particle_System = particle_system ([0, O, -10], 1, 1);

Right off the bat, the simulation loop can be started

step_time = 0.02;
for i = 1 : inf

Now, all you have to do in every single time step is to create a new particle at the
origin ([0, 0, 0]), with a limited lifespan of 0.5 and an initial velocity (direction) that
depends on the position of the current mouse pointer position (4*current_point). And
yes, add a little bit of jitter to the initial velocity (0.2xrand (1, 3)); it makes the
stream look more realistic

current_point = mean (get (gca, ’currentpoint’));

Particles{i} = particle (Particle_System, 1, [0, O, 0],
4*xcurrent_point + 0.2%rand (1, 3), false, 0.5);

Transmogrify blood to water

set (Particles{i}.graphics_handle, ’color’ , [0.5, 0.5, 11)

and keep going

Particle_System.advance_time (step_time);

end
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Since the particle lifespan is limited to 0.5 and the simulation step time has a value of
0.02 all three snapshots in Figure 18 show some 25 particles.

-1 1

(b) t =4

Figure 18: The hose

2.11 Demo 11: Polyhedrons

The classical polyhedron is a three-dimensional shape made up of planar polygons. The
five Platonic solids (tetrahedron, cube, octahedron, dodecahedron, and icosahedron) are
the only convex regular polyhedrons. Is there a chance to persuade particles in a particle
system to arrange themselves as the vertices of Platonic solids? How would you have to
define springs and attractions to simulate the self-inflation of the icosahedron depicted
in Figure 197

(a) t=0 (b)y t=2 (c) t=20
Figure 19: Self-configuration of an icosahedron
All 12 vertices of an icosahedron have an equal distance (the radius of the circumscribed

sphere) to its center; this could be modeled by a fixed center particle and 12 springs (with
equal rest lengths) between the center particle and the 12 free vertex particles. Next,
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all vertices have to find their place on the sphere, equally distributed, with maximum
mean distance to all neighbors. Therefore, repulsions between every single particle and
all other particles could force every particle into its own minimum energy position. The
particle system provides drag (1), but no gravity ([0, 0, 0]).

Particle_System = particle_system ([0, O, 0], 1, 2);

Turn off all axis labeling, tick marks, and background

axis off;

The center particle should be fixed, to keep the polyhedron in the center of the axes

Particle_center = particle
(Particle_System, 1, [0, O, 0], [0, O, O], true, inf);

Define the number of vertex particles

n_particles = 12;

and start a loop over all vertices to be created

for i = 1 : n_particles

All vertex particles have a random initial position (randn (1, 3)) and a unit mass

Particle{i} = particle
(Particle_System, 1, randn (1, 3), [0, O, 0], false, inf);

Every vertex is connected to the center particle via a unit spring with a strength of 10

Spring{i} = spring
(Particle_System, Particle_center, Particle{i}, 1, 10, 1);

end

Repulsions (-1) with a little bit of damping (0.01) are defined between every vertex and
every other vertex

for i = 1 : n_particles
for j = 1 : n_particles
if i < j

Attraction{i, j} = attraction
(Particle_System, Particle{i}, Particle{j}, -10, 0.01);

end

30



end

end

The if-clause (if i < j) makes sure that there is only one repulsion between every ver-
tex pair. Since the number of repulsions grows quadratic with the number of particles

o Nparticles (nparticles - 1)
Nrepulsions = 9

the step time should not be chosen too small

step_time = 0.2;
for i = 1 : inf

The next few lines of code produce the colored faces of the polyhedron. The basic idea
is to chose the color depending on the orientation of the normal vector of the particular
face. Thus, only adjacent parallel faces will have the same color. First, the current
particle position vector has to be rearranged into a vertex matrix with three columns
(x-, y-, and z-coordinates)

particles_positions =
Particle_System.get_particles_positions;
positions = reshape (particle_positions, 3, n_particles + 1);

vertices = positions’;

The next — a little bit more difficult — task is to find that minimum number of ”outer”
faces that make up the convex hull surface of the polyhedron. Fortunately, MATLAB
provides the convhulln command that can directly find the indices of the involved hull
vertices

faces = convhulln (vertices);
n_faces = size (faces, 1);

Before the faces of the hull can be created, the handle vector, holding the corresponding
patches, has to be initialized

patch_handle = [];
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This is necessary, because the number of patches can decrease during the simulation and
in that case the leftover from the last simulation step would crash the delete command.
The hull faces are created in a loop over all index rows the convhulln command has
found

for i_faces = 1 : n_faces

Every row of the faces matrix contains the indices of three vertices that make up the
triangular facet. Using these values as indices into the vertices matrix gives you the
position vectors of all three facet vertices

vertex_1 = vertices(faces(i_faces, 1), :);
vertex_2 = vertices(faces(i_faces, 2), :);
vertex_3 = vertices(faces(i_faces, 3), :);

The difference between two vertex position vectors describes an edge vector of the facet

edge_1 = vertex_1 - vertex_2;
edge_2 = vertex_1 - vertex_3;

and the cross product of two edge vectors defines the vector standing perpendicular on
the plane spanned by the edge vectors

normal = cross (edge_1, edge_2);

In order to use the normal vector as an RGB color vector, it has to be scaled, until its
components are in the 0...1 domain

face_color = 0.5*(normal/norm (normal) + 1);

Now the patch can be created using the recently computed vertices, color, and a trans-
parency (facealpha) of 90%

patch_handle (i_faces) = patch

(’vertices’, vertices(faces(i_faces, :), :),
>faces’, [1 2 3],

’facecolor’, face_color,

>facealpha’, 0.9);

end

The drawnow command makes sure that the patch is drawn immediately after its cre-
ation

drawnow

After the computation of the next simulation step and before the creation of a new
polyhedron, the "old one” has to be deleted
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Particle_System.advance_time (step_time);
delete (patch_handle)

end

2.11.1 Number of Particles: 3

You cannot really create a true regular convex 3-dimensional polyhedron from just three
vertex particles. If you try it

n_particles = 3;

the first few simulation steps actually show a 3-D object, since the initial positions of the
particles are chosen at random; but soon the springs and repulsions force the particles
to form an equilateral triangle. Unfortunately, triangles do not have a volume; thus
the convhulln command runs into a problem, as the particles arrange themselves more
and more in one single plane. After a few warnings about a "narrow hull”, convhulln
stops the simulation with the understandable error message

Qhull could not construct a clearly convex simplex

2.11.2 Number of Particles: 4

The Platonic solid with four vertices is called a regular tetrahedron. Obviously, the
particles are forced into a configuration of the four (Greek: tetra-) equivalent equilateral
triangular faces depicted in Figure 20.

2.11.3 Number of Particles: 5

There is no Platonic solid with five vertices. Nevertheless, the corresponding simulation
creates the highly symmetrical polyhedron in Figure 21. It is called a triangular dipyra-
mid, because it can be ”constructed” by ”"gluing” two (Greek: di-) triangular pyramids
(tetrahedrons) base-to-base.
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Figure 20: Tetrahedron (nparticies = 4)

Figure 21: Triangular Dipyramid (npartictes = )

2.11.4 Number of Particles: 6

The six free particles of this simulation inflate into a regular octahedron (Figure 22),
which is one of the Platonic solids. The octahedron (Greek for ”eight faces”) is also
called a square dipyramid because it can be dissected into two pyramids with square
bases. Seen from another angle of view, the octahedron also is a triangular antiprism,
because there are (four) pairs of opposing parallel triangles, of which one has its vertices
where the other one has its edges.
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Figure 22: Octahedron, square dipyramid, triangular antiprism (npeticies = 6)

2.11.5 Number of Particles: 8

Yes — there is a Platonic solid with eight vertices; the regular hexahedron, aka the cube.
But no — interestingly, this polyhedron simulation does not create a cube, if you ask
it to arrange eight particles in a minimum energy state. The astonishing result is the
square antiprism shown in Figure 23, which consists of two squares'® (a ”bottom square”
and a "top square”) that have been rotated (45°) into paraphase and eight triangles
connecting the edges of the bottom square with the vertices of the top square and vice
versa'’. Obviously, this ”twisting” of the squares leads to a stable equilibrium of the
contradicting forces of the springs and repulsions, while the cube, where the vertices
of the squares "face each other directly”, produces an indifferent equilibrium that will
never be reached in a simulation with random initial positions.

2.11.6 Number of Particles: 12

In a simulation with 12 particles, all of them find their positions at the vertices of the
regular icosahedron (Greek for "twenty faces”) shown in Figure 24 (and Figure 19),
which is another one of the Platonic solids.

18You can easily identify the squares as two adjacent triangles of the same color (same plane normal).
19You have to try out this simulation! It is really cute to watch the particles swarm around, until they
have come to an agreement on which of them makes up the bottom and top squares.
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Figure 23: Square antiprism (not a cubel) (nparticres = 8)

Figure 24: Icosahedron (npgticies = 12)

2.11.7 Number of Particles: 20

The Platonic solid with 20 vertices and 12 (Greek: dodeca-) faces is called a regular
dodecahedron. But again (as with the square antiprism) the 20 particles minimum
energy configuration depicted in Figure 25 is not a dodecahedron. The author has not
even found a proper name for that irregular polyhedron. At first glance it seems to
consist of triangles and three squares (adjacent triangles of the same color). But if you
look more carefully at the "squares” you can discover that the colors of the adjacent
triangles do not have the exact same color. Strange ...!
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Figure 25: Not a dodecahedron! (nparticies = 20)

2.12 Demo 12: Three-Body Eight

In the year 2000, Alain Chenciner and Richard Montgomery published A Remarkable
Periodic Solution of the Three-Body Problem in the Case of Equal Masses [14]. They
showed that three particles — initialized with proper positions and velocities — chase each
other around the fixed eight-shaped curve depicted in Figure 26.
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Figure 26: Three-body eight

The particle system is 2-D, no-gravity, no-drag, but king-size axes (2)

Particle_System = particle_system ([0, O, 0], O, 2);
view (0, 0);

The initial positions and velocities are chosen according to [14]
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initial_position
initial_velocity

[0.97000436, 0, -0.2430875];
[-0.93240737, 0, -0.86473146];

Three particles

Particle_1 = particle
(Particle_System, 1, initial_position
-initial_velocity/2, false, inf);

b

Particle_2 = particle
(Particle_System, 1, -initial_position,
-initial_velocity/2, false, inf);

Particle_3 = particle
(Particle_System, 1, [0, O, 0],
initial_velocity, false, inf);
and standard attractions between all particles
Attraction_1 = attraction

(Particle_System, Particle_1, Particle_2, 1, eps);

Attraction_2 = attraction
(Particle_System, Particle_1, Particle_3, 1, eps);

Attraction_3 = attraction
(Particle_System, Particle_2, Particle_3, 1, eps);

are all we need. During the simulation

step_time = 0.05;
for i = 1 : inf
Particle_System.advance_time (step_time);

a quick-and-dirty path trace is drawn by plotting an asterisk character at the current
position of one of the particles. Since every new asterisk has to be managed as an
object in the axes, the simulation might slow down after a while and you might want to
comment out the following two lines of code on slow machines

pp = num2cell (Particle_3.position);
text (pp{:}, ’%’, ’color’, ’r’)

end
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3 Mathematical Background

The motion of a particle in Figure 27 can be described by three motion vectors

e p: Position vector of the particle
e v: Velocity vector of the particle

e a: Acceleration vector of the particle

Spring

S

Particle
A
a
R
Attraction
0 »
l v
Damper
G
D
A

Figure 27: Force and motion vectors

While the position and the velocity vectors describe the (energetic) state of the particle
(these two vectors build up the particle state vector), the acceleration vector results from
the vectorial sum of all external force vectors acting on the particle (Newton’s second
law of motion). Seen from the view of d’Alembert’s principle, the forces in Figure 27
are
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G: Gravity (force) vector, modeling the mass attracting force in a gravitational
field

R: Resistance force vector (drag), modeling the effect that surface-tainted objects
"lose” energy while moving under atmospheric conditions

I: Inertial force vector, d’Alembert’s fictitious acceleration defying force

A: Attraction force vector, resulting from an attraction or repulsion between two
particles

S Spring force vector, resulting from a spring between two particles, that is not
at its rest length
)

D: Damping force vector,” resulting from a (realistic) spring, that dissipates en-
ergy while being stretched or compressed

Utilizing d’Alembert’s Inertial force, the sum of all forces produces a dynamic equilib-
rium

G+R+I+A+S+D=0 (2)

3.1 May the Force be with you...

This section describes every single force in more detail.

3.1.1 Gravity

In general, gravity refers to an attractive force that all massive objects exert on each
other. In the simplified context of this toolbox all particles are attracted by a huge mass
(the earth or another planet) that produces a field with parallel lines of flux and a force
vector G, that does not depend on the position, but only on the mass m of the particle
and the gravitational acceleration vector g

G =mg (3)

The acceleration due to gravity g is a constant property of the particle system ob-
ject, that cannot only be used to model conventional "all particles fall down” environ-
ments g,

0 0 12.34 0
g=1 0 go= 10 gs = | 5.67 g9,= 10
~9.81 42 89.0 0

but also those with "negative””! gravity g,, arbitrary gravity g,, and zero gravity g,.

20Please note, that the spring and the damping force vectors have been displaced for graphical reasons
only; in reality, both of them act on the center of gravity and do not produce a torque.
2INegative gravity moves objects up, i.e. in positive z-direction.
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3.1.2 Drag

This is all about fluid friction, viscous resistance, and air drag. In general, the force of
drag R experienced by an object moving through a fluid can be expressed by

n
R:Z—Tz‘|”|i"): —Trov —ry|v|v —7’2]'0]21) — ... (4)
=0 =

Viscous resistance  Air drag

where r; are drag coefficients depending on the size of the particle, the fluid properties,
and the velocity domain (slow. . .fast), v denotes the velocity vector of the particle and
|v]| its scalar norm or magnitude.

If a small particle moves in a fluid at low speed, only the first term in FEquation 4 is
significant;”” the drag linearly depends on the particle velocity

R=—rv (5)

The negative sign indicates, that the drag vector acts in the opposite direction of the
particle velocity vector (s. Figure 27), slowing down the particle. The constant scalar
drag coefficient r is a property of the particle system object.

3.1.3 Inertial Force

Utilizing d’Alembert’s principle, an inertial force is introduced, that could be interpreted
as a "resistance of a mass against acceleration”

I=—-ma (6)
Similar to the drag equation (Equation 5), the opposing directions of inertial force I and

acceleration a are expressed in Figure 27, as well as by the negative sign in Equation 6.

3.1.4 Attraction Force

As indicated in Figure 28, an attraction force A between two particles could e.g. rep-
resent the gravitational force between two masses, the electrostatic force between two
electric charges, or the magnetic force between two dipoles.

22Tn this toolbox, drag is modeled according to Equation 5. Nevertheless, it is quite straightforward to
implement further terms of Equation 4 (e. g. air drag) in the corresponding aggregate drag forces
method.
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0

Figure 28: Attraction force A between two particles

For the computation of the attraction force vector, we first have to express the particle
distance vector Ap as the difference between the position vectors p and p* of both
particles

Ap=p“ —p (7)

Next —e. g. in the gravitational case — the norm | A| of the attraction force vector linearly
depends on each of the particle masses (m and m*) and quadratically on the reciprocal
of the scalar distance between the particles

A=y 8

4= ®)
Additionally, the attraction strength factor v — which would be the gravitational con-
stant G = 6.6742 - 107" Nm? kg2 in a real-world gravity environment — can be chosen
arbitrarily as a property of the attraction object. Finally, the attraction vector results
from the product of its magnitude (Equation 8) and its normalized (unit) direction
vector (Equation 7)

*

Ap mm* Ap mm

A=Al =7 = Ap (9)
[Apl  “|Ap]*|Ap] T |Apf

While A is the force vector accelerating the first particle towards the second one in
Figure 28, according to Newton’s third law (”action equals reaction”), an equal force
vector with opposing direction (—A) accelerates the second particle towards the first
one. Attractions can easily be turned into repulsions by utilizing a negative strength
factor ~.
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3.1.5 Spring Force

According to Figure 29 a spring between two particles causes a force depending on the
particle distance.

Figure 29: Spring force S between two particles

With the particle distance vector being calculated according to Fquation 7, the magni-
tude” of the spring force is proportional to the deviation of the scalar distance from the
spring rest length [,

t8t=c(lAp[—1)) (10)
where ¢ is the spring (strength) constant, which defines the stiffness of the spring and
which — just like the rest length — is a property of the spring object. Again, combining
the magnitude (and orientation) of Equation 10 with the normalized vector direction of
Equation 7 results in the spring force vector

A A
S = TST-,A—]I;' — c(|Ap| —mﬁ (11)

acting on both particles.

3.1.6 Damping Force

An ideal spring force does only depend on the length of the spring. A more realistic
spring model might also take into account the velocity depending damping forces, that

ZStrictly spoken, 181 does not only include the magnitude (norm) of the spring force vector but also its
orientation (i.e., its sign). 1St is positive (drawing the particles towards each other), if the particle
distance is greater than the rest length of the spring; but it can also become negative, if the spring
is compressed beyond its rest length.
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transform kinetic energy into dissipation energy. Therefore, in this toolbox, every spring
object is accompanied by a damper (Figure 30).

-V

Figure 30: Damping force D between two particles

As a first approximation, the damping force linearly depends on the velocity the damper
is elongated or compressed with. If v and v* denote the velocities vectors of the first
and second particle, respectively, Awv is the relative’! velocity between both particles

Av=v"—w (12)

Since the damping force does only”” depend on the velocity component along the moving
axis of the damper, we have to compute the projection” vector Aw, of the relative
velocity vector Av along the damper axis direction, which is defined by the distance
vector Ap between the particles

Ap ) Ap
Av,= | —Av | —— 13
= (1ap) ian 1)
Finally, the damping force vector D can be computed via
Ap ) Ap
D=d Av,=d| —Av | —— 14
=4 i2p07) ap -

where d is the constant damping property of the spring object.

24To be precise, Awv is the velocity of the second particle with respect to the first particle.

25Imagine the first particle being fixed and the other particle moving about the first one on a circular
orbit. There would be a relative velocity vector Av but no damping force.

26The projection of one vector along another vector is derived in Appendix A.
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3.2 Differential Equations

Using all final force expressions, Fquation 2 can now be expanded

mm* Ap Ap Ap
—rv — A Ap| — Av | —— = 1
mg —rv ma+7|Ap|3 p+c(|Ap| —1,) Ap) +d (\AP| v) Ap 0 (15)

Equation 15 describes a vectorial nonlinear second order system with three (translatory)
degrees of freedom. This becomes obvious, if we recall that the current state of a single
particle is defined by two three-dimensional state vectors: the position vector p and the
velocity vector v. In order to simulate the motion of a particle, we now have to lay
down the differential equation system of that particle. Every state vector has its own
(vectorial) first order differential equation. The position differential equation is merely
the definition of the velocity, being the time derivative of the position

p=v (16)

To come up with the velocity differential equation, we use the fact that the acceleration
is the time derivative of the velocity (a = ©) for the substitution of the acceleration in
Equation 15

_ mm* Ap Ap Ap
— — + 7y Ap + c(|Ap| — + A —_ = 1
mg —rv —mv | |3 p+c(|Ap| —1,) Ap| d <| | ’U) Ap| 0o (17

Integration algorithms want first order differential equations with the derivative on the
left hand side, while the right hand side of the equation has to be programmed in a
function. Therefore we have to solve Equation 17 for the derivative of the velocity

) r m* c Ap d ([ Ap Ap
v=g— —v+ Ap + — Ap—lr——f——( A'v) 18
9= T app P o AP R o Rl TRpl

The last step is to assemble both states (p and v) into the phase space state vector x

T = [p] (19)

v

and to use Equation 16 and Equation 18 to depict the general nonlinear differential
equation system & = f (x)

P v
= r m* c A A A (20)
['v] [g_ﬁ”+7|Ap|3Ap+E(|Ap’_lr)m_ijL%<A_Z|A'”> A_ZJ

ready to be simulated by an appropriate integration algorithm.
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4 Particle System Object

Just like the mathematical background, the 7 public (user accessible) and 13 private
(internal) methods — programmatically described in the following sections — give you
detailed information on how the objects of this toolbox interact; this knowledge is not
essential for the use of the toolbox, but might help you to adapt it to your own needs.

4.1 Class Definition particle_system

As of R2008a, MATLAB classes can subclass (i.e. inherit from) a new abstract class
called handle class, finally allowing true aggregation, where only a reference (a handle
or a pointer) to the object is aggregated in another object and the original object can still
be addressed and modified. The MATLAB documentation elaborates on this concept:

Objects of handle classes use a handle to reference objects of the class. A
handle is a variable that identifies a particular instance of a class. When a
handle object is copied, the handle is copied but not the data stored in the
object’s properties. The copy refers to the same data as the original - if you
change a property value on the original object, the copied object reflects the
same change.

All objects in the version 2.0 of this toolbox are derived from the handle class, signif-
icantly increasing the ease of aggregation and administration of particles, springs, and
attractions in the particle system. The corresponding definition of the particle system
class encapsulates the properties and methods described in the following sections

classdef particle_system < handle
properties

end
methods

end
end

4.2 Properties particle_system

The property definition block numerates all properties of the particle system object, in-
cluding the environmental attributes gravity and drag, the arrays particles, springs,
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and attractions that will later on host the homonymous objects, and the graphics han-
dle of the dedicated figure. The time property holds the current simulation time; it is
updated in every simulation time step and is directly initialized in the property block

properties
gravity
drag
particles
springs
attractions
time = 0
graphics_handle

end

4.3 Constructor particle_system

With a call to particle_system you create a particle system with gravity, drag, and
axes limits

function Particle_System = particle_system
(gravity, drag, limits)
If you do not supply environmental parameters with your function call, the function
makes up its own default parameters
if nargin ==
gravity = [0, 0, 0];

drag = 0;

limits 1;

end

Properties of MATLAB objects are stored in structure array fields

Particle_System.gravity = gravity;
Particle_System.drag = drag;

The 1imits parameter is not saved as a particle system property; it is only used once to
initialize the axes. If you subsequently want to alter the limits (or any other parameter)
of the axes, you can directly address the axes via gca or as a child of graphics_handle.

Open a new empty figure window and save the figure handle
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Particle_System.graphics_handle = figure;

The next few lines of code are not really necessary, but set some useful graphical de-
fault options. You might e.g. want to render the graphical object representations with
OpenGL, in order to see semi-transparent surfaces

set (Particle_System.graphics_handle, ’renderer’, ’opengl’)

You can always switch over to other renderers, but presently OpenGL seems to give
the best ”cost/performance ratio”. Unfortunately, MATLAB does not provide a native
way to maximize a window and all tools found on [I1] have their own problems and
restrictions. One more or less elegant way to "maximize” the figure window could be

screen_size = get (0, ’screensize’);

set (Particle_System.graphics_handle,
’position’, screen_size + [20 40 -40 -120]1);

Next, you might want to create an axes, initialize its limits to the user supplied values,
make circles and spheres appear as circles and spheres and display a grid

axis ([-limits limits -limits limits -limits limits]);

axis equal

grid on

Using the mouse (with a pressed left mouse button) to rotate the axes might be a good
idea for most 3D applications. If not — just switch it off in your application or comment
this line per default

rotate3dd

end

4.4 Method get_particles_positions

The get_particles_positions method of the particle system provides a convenient
user accessible shortcut for the retrieval of all current particle positions

function particles_positions = get_particles_positions
(Particle_System)

The positions of all particles are returned in one long row vector that should be initialized
for performance reasons
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n_particles = length (Particle_System.particles);
particles_positions = zeros (1, 3*n_particles);

In a loop over all particles in the particle system

for i_particle = 1 : n_particles

the current particle ist retrieved and its position property vector is collected in the

particles_positions vector.

Particle = Particle_System.particles(i_particle);

particles_positions (3*i_particle - 2 : 3*i_particle) =
Particle.position;

end

end

4.5 Method get _particles_velocities

The get_particles_velocities method retrieves the current velocities of all parti-
cles

function particles_velocities = get_particles_velocities
(Particle_System)

It is very similar to the get_particles_positions method; After the initialization
of the particles_velocities vector, a single particle is retrieved in a loop over all

particles
n_particles = length (Particle_System.particles);

particles_velocities = zeros (1, 3*n_particles);
for i_particle = 1 : n_particles
Particle = Particle_System.particles(i_particle);

If the particle has been flagged as fixed, its velocity is explicitly set to zero
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if Particle.fixed

velocity = [0, 0, 0];
else

velocity = Particle.velocity;
end

and finally the velocity vector of the current particle is stored in the velocity vector of
all particles

particles_velocities (3*i_particle - 2 : 3%i_particle) =
velocity;

end

end

4.6 Methods kill_spring, kill attraction

Sometimes you want to delete objects (particles, springs, and attractions) during simu-
lation. Think e. g. of a particle that hits a wall and is absorbed by that wall. As soon
as it touches the wall, the particle itself and all springs and attractions attached to that
particle have to be deleted. The user addresses a spring to be deleted in the particle
system method kill_spring directly via its name

function kill_spring (Particle_System, Spring)

In order to delete the spring object embedded in the particle system we first have to
find its array index

index = Particle_System.springs == Spring;

Hereupon the spring object can be removed from the particle system

Particle_System.springs (index) = [];

Additionally, the delete method of the spring object is called in order to delete the
graphical representation of the spring

Spring.delete;

end
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The "killing of an attraction” looks like an identical twin - no need to go into details . ..

4.7 Method kill_particle

The complete deletion of a particle

function kill_particle (Particle_System, Particle)

is quite a bit more complicated because we do not only have to delete the particle itself
but also all springs and attractions attached to the particle. At first, we want to delete
all attractions attached to the particle. After initializing a kill buffer”’

attractions_to_be_killed = [];

we start a loop over all attractions in the particle system
for i_attraction = ...
1 : length (Particle_System.attractions)
In that loop we retrieve a copy of the current attraction

Attraction = Particle_System.attractions(i_attraction);

and determine the particles at both ends of that attraction

Particle_1 = Attraction.particle_1;
Particle_2 Attraction.particle_2;

If the particle to be deleted is found at either end of the current attraction

if Particle == Particle_1 || Particle == Particle_2

the attraction is appended to the kill buffer, marking it for future deletion

attractions_to_be_killed =
[attractions_to_be_killed, Attractionl];

end
end

Now it is time to actually delete the attractions accumulated in the kill buffer. In a loop
over all attractions to be deleted

2TThe kill buffer is necessary because you do not want to delete an attraction immediately, while you
are still going through all attractions in a for loop. Deleting an attraction causes a reindexing of
all successors of that attraction, thus leading to potential index mismatch problems in the course of
the loop.

51



for i_attraction = attractions_to_be_killed
the already discussed kill attraction method of the particle system is used to delete
every single attraction marked for demolition

Particle_System.kill_attraction (i_attraction);
end

Again, the analogous program section performing the deletion of all springs attached to
the particle to be deleted is not discussed here.

Finally, the destruction of the particle itself utilizes the same steps of ”find the index”,
"delete the object”, and "delete the graphics object” already described in detail in
kill spring

index = Particle_System.particles == Particle;
Particle_System.particles (index) = [];
Particle.delete;

end

4.8 Method advance_time

An interactive real-time simulation environment should provide full user control over
every single simulation step. Therefore, in the described particle system toolbox the
user calls the advance_time method

function advance_time (Particle_System, step_time)

in every cycle of the simulation loop, defining the step time of the current simulation
step. In order to avoid unnecessary computations, the first task of advance_time is to
delete all particles that have reached the end of their lifetime

Particle_System.kill_old_particles;

The current simulation time can be found as a property of the particle system

time_start = Particle_System.time;

and is used to determine the time at the end the simulation step to be carried out

time_end = time_start + step_time;
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The phase space state vector describes the (potential and kinetic) energy state of the
particle system. Therefore, the state vector consists of the positions (p;) and velocities
(v;) of all n particles arranged in one long row vector

D1 P2 o Pa v V2 e vy

phase_space_state = Particle_System.get_phase_space_state;

Now we have to integrate the differential equation system. Since all of MATLAB’s build-
in differential equation solvers are highly sophisticated variable-step solvers that cannot
easily and efficiently be downgraded to meet real-time requirements, a simple fixed-step
fourth-order Runge-Kutta solver from [12] is used*

phase_space_states = oded (...
@Gcompute_state_derivative,
[time_start, time_end],
phase_space_state,
Particle_System);

Since ode4 is not a method of the particle system, it has been implemented as a subfunc-
tion of the advance_time method. The call to the ode4 solver allows four parameters

e Ocompute state derivative is the handle to the function that computes the cur-
rent state vector derivative (the right hand side of the differential equation system)
from the current state vector.

e [time start, time_end] defines the beginning and the end of the time interval
the algorithm has to integrate through.”’

e phase _space_state is the (initial condition of the) state vector at the beginning
of the current time step.

e Particle System is an additional parameter that is directly channeled through
by ode4 to compute state derivative.

After a successful integration step, ode4 returns a state matrix, each row representing
the state vector at one of the specified points of time. Since we already know the state
vector at time_start (corresponding to the first row), we are only interested in the
second row, featuring the state vector at the end of the time step

phase_space_state = phase_space_states(2,:);

Z8Runge-Kutta integration is so common use (see e. g. [3]), that it seems not to be necessary to describe
the algorithm in detail.

29Even though ode4 could also compute the state vector for more than one time step at once (using
a time span vector with more than two elements), this real-time application needs to do one single
integration step after the other.
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The new current state vector

Particle_System.set_phase_space_state (phase_space_state);

and the new current time can now be rewritten into the particle system object

Particle_System.time = time_end;

Furthermore, the fact that all particles have grown older one time step has to be docu-
mented

Particle_System.advance_particles_ages (step_time);

and the positions of the graphical representations of all particles, springs, and attractions
have to be updated

Particle_System.update_graphics_positions;

end
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5 Particle System Object (Private Methods)

5.1 Private Method kill old_particles

The private method

function kill_old_particles (Particle_System)

is called by advance time in order to delete all particles that have reached the end of
their life span. The following proceeding is very similar to the deleting of all attractions
connected to a particle described in the second half of ki1l particle. After initializing
a kill buffer

particles_to_be_killed = [];

a loop over all particles begins

for i_particle = 1 : length (Particle_System.particles)

in which the current particle is retrieved

Particle = Particle_System.particles(i_particle);

If the current particle is too old

if Particle.age > Particle.lifespan

it is appended to the kill buffer

particles_to_be_killed =
[particles_to_be_killed, Particlel];

end
end

Finally, in a loop over all particles to be deleted

for i_particle = particles_to_be_killed

the particle is actually deleted by a call to the public kill particle method

Particle_System.kill_particle (i_particle);
end

end
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5.2 Private Method get_phase_space_state

The user-called advance time method needs the particle system state (positions and
velocities of all particles) in form of one long state vector. This is achieved by a call to

function phase_space_state = .
get_phase_space_state (Particle_System)
that simply retrieves the positions and the velocities of the particles
positions = get_particles_positions (Particle_System);
velocities = get_particles_velocities (Particle_System) ;
and combines them into the desired vector

phase_space_state = [positions, velocities];

end

5.3 Private Method compute_state_derivative

The private method
function state_derivative = compute_state_derivative

(time, phase_space_state, Particle_System)

is called (four times per Runge-Kutta integration step) by the solver routine ode4, that
provides the current state vector (phase_space_state) and awaits the method to return
the derivative (state_derivative) of the state vector by evaluating the right hand side
of the differential equation system:

The evaluation is initialized by transposing the state vector into a row”’ vector
phase_space_state = phase_space_state(:)’;

and inserting it (back) into the particle system

Particle_System.set_phase_space_state (phase_space_state);

30 All physical vectors (positions, velocities, forces, ...) in this toolbox are row vectors; with the one
exception that the solver oded expects (and returns) the state vector to be a column vector. Since
ode4 is a third party routine, its parameter handling has not been altered.
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Next, all forces (springs, attractions, drag, and gravity) acting on the particles are
computed and aggregated in the corresponding particle force accumulators

Particle_System.aggregate_forces;

Now the state derivatives have to be retrieved. While the derivatives of the particle
positions are just the particle velocities?

velocities = Particle_System.get_particles_velocities;

the derivatives of the velocities are the accelerations, which have to be computed from
the aggregated forces and the masses of the particles

accelerations = Particle_System.get_particles_accelerations;

Finally, velocities and accelerations are combined into the current state derivative (col-
umn) vector to be returned by compute_state_derivative to ode4

state_derivative = [velocities, accelerations]’;

end

5.4 Private Method set_phase_space_state

This method

function set_phase_space_state
(Particle_System, phase_space_state)

is the counterpart to get phase space state and is used to take the state vector apart
and insert its components back into the position and velocity properties of the corre-
sponding particles. After retrieval of the number of particles

n_particles = length (Particle_System.particles);

a loop over all particles begins

for i_particle = 1 : n_particles

in which the current particle is retrieved

Particle = Particle_System.particles(i_particle);

31The particle velocities could also directly be retrieved from the (second half) of the state vector that
has just been inserted into the particle system. The method chosen here (retrieval from the particle
system; just like the retrieval of the accelerations) is slightly slower but seems to be a little bit more
concise.
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The positions of the particles can be found (and updated) in groups of three in the first
half of the state vector

Particle.position = .
phase_space_state (3*xi_particle - 2 : 3*xi_particle);

while the velocities can be extracted from the second half of the state vector
Particle.velocity = phase_space_state...
(3*(i_particle + n_particles) - 2
3x(i_particle + n_particles));

end

end

5.5 Private Method aggregate_forces

Every particle has a force accumulator in which all forces affecting the particle are
aggregated in every time step

function aggregate_forces (Particle_System)

Before the new forces can be accumulated, the force accumulator has to be zeroed

Particle_System.clear_particles_forces;

Now the forces from springs, attractions, drag, and gravity can be calculated and
summed up in the particle accumulator

Particle_System.aggregate_springs_forces;
Particle_System.aggregate_attractions_forces;
Particle_System.aggregate_drag_forces;
Particle_System.aggregate_gravity_forces;

end

5.6 Private Method clear_particle_forces

The method to zero all particle force accumulators

function clear_particles_forces (Particle_System)

simply goes through all particles
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for i_particle = 1 : length (Particle_System.particles)

retrieves the current particle and calls its clear force method

Particle = Particle_System.particles(i_particle);
Particle.clear_force;
end

end

5.7 Private Method aggregate_springs_forces

The method

function aggregate_springs_forces (Particle_System)

implements the computation and aggregation of the forces the springs exert on the
particles. In a loop over all springs

for i_spring = 1 : length(Particle_System.springs)

we first retrieve the current spring object

Spring = Particle_System.springs(i_spring);

and the particles at both ends of the spring

Particle_1 = Spring.particle_1;
Particle_2 Spring.particle_2;

Next, we compute the distance vector position_delta between the particles (which
equals the spring vector)

position_delta = Particle_2.position - Particle_1.position;
The spring force is proportional to the spring length position_delta_norm, which is
the magnitude of the particle distance vector

position_delta_norm = norm (position_delta);

If the spring has a very small length (e.g. because you have initialized all particles at
the origin)

if position_delta_norm < eps
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the computation of the unit distance vector could lead to a divide-by-zero exception.
Therefore, we restrict the minimum spring length to MATLAB’s very small floating point
spacing constant eps

position_delta_norm = eps;
end

Now we can compute the spring unit vector position_delta_unit, which has the di-
rection of the spring and a magnitude of one

position_delta_unit = position_delta/position_delta_norm;

According to Fquation 11 the spring force is then proportional — with the spring stiffness
as the gain — to the deviation of the actual spring length position_delta_norm from
the spring rest length

spring_force = Spring.strengthx*
position_delta_unit*(position_delta_norm - Spring.rest);

Thereby, the direction of the spring force vector is defined by the spring unit vector.
Finally, aggregate the current spring force vector in the force accumulator of the particles
at both® ends of the spring

Particle_1.add_force (spring_force);
Particle_2.add_force (-spring_force);

As described in subsubsection 3.1.6, a realistic spring does also show some damping force
depending on the velocity the spring is elongated or compressed with. Therefore, we
compute (according to Fquation 12) the relative velocity vector between the particles

velocity_delta = Particle_2.velocity - Particle_1.velocity;

The reason why we have to project the relative particle velocity vector along the particle
distance vector

projection_velocity_delta_on_position_delta = dot

(position_delta_unit, velocity_delta)*position_delta_unit;

is explained in detail in the section before FEquation 13. With the velocity projection
vector we obtain the damping force vector of the spring via Equation 14:

damping_force = Spring.dampingk*
projection_velocity_delta_on_position_delta;

32Please note, that (unisono with Figure 29) the spring force vector accumulated in the ”second”
particle has a negative sign (indicating the opposite direction of the force)
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The final step is to aggregate the damping force vector with the correct sign in the force
accumulators of the end particles

Particle_1.add_force (damping_force);
Particle_2.add_force (-damping_force);

end

end

5.8 Private Method aggregate_attractions_forces

The method to aggregate the forces an attraction object exerts on its end particles

function aggregate_attractions_forces (Particle_System)

is very similar to the first part of the aggregate springs forces method. In a loop
over all attractions

for i_attraction = 1 : length(Particle_System.attractions)

the current attraction object and its end particles are retrieved

Attraction = Particle_System.attractions(i_attraction);
Particle_1 = Attraction.particle_1;
Particle_2 = Attraction.particle_2;

and the particle distance vector and its magnitude are computed

position_delta = Particle_2.position - Particle_1.position;
position_delta_norm = norm (position_delta);

The minimum_distance property of the attraction object causes a limitation of the
maximum attraction force; if the particles are closer to each other than that minimum
distance, the force is calculated as if the particles were minimum_distance apart™

if position_delta_norm < Attraction.minimum_distance
position_delta_norm = Attraction.minimum_distance;

end

331f you really want the attraction force to increase ”ad infinitum” (if the particles get closer and closer),
you should use MATLAB’s minimum floating point constant eps as minimum distance instead of
zero, which would lead to a divide-by-zero exception.
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Now the attraction force vector can be computed according to Equation 9

attraction_force =
Attraction.strengthx*
Particle_1.mass*
Particle_2 .mass*
position_delta/
position_delta_norm/
position_delta_norm/
position_delta_norm;

Finally, the attraction force vectors are summed up — appropriately signed — in the force
accumulators of the end particles

Particle_1.add_force (attraction_force);
Particle_2.add_force (-attraction_force);

end

end

5.9 Private Method aggregate _drag_forces

Compared to the aggregate springs forces and aggregate attractions forces meth-
ods, the method to compute and aggregate the drag forces slowing down the particles

function aggregate_drag_forces (Particle_System)

is pretty short. Just start a loop over all particles

for i_particle = 1 : length(Particle_System.particles)

and retrieve the current particle

Particle = Particle_System.particles(i_particle);

Compute the drag force vector according to Equation 5

drag_force = - Particle_System.drag*Particle.velocity;

and add the force to the content of the particle force accumulator

Particle.add_force (drag_force);
end

end
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5.10 Private Method aggregate _gravity forces

The accumulation of the gravitational forces

function aggregate_gravity_forces (Particle_System)

is very similar to the aggregation of the drag. After the retrieval of the current particle
in a loop over all particles, the g-force is computed in accordance with Equation 3 and
fed into the corresponding accumulator.

for i_particle = 1 : length (Particle_System.particles)
Particle = Particle_System.particles(i_particle);
gravity_force = Particle.mass*Particle_System.gravity;

Particle.add_force (gravity_force);
end

end

5.11 Private Method get_particles_accelerations

According to Equation 20, the compute state derivative method has to retrieve the
velocity and the acceleration vectors of all particles and return them as the phase state
derivative vector. While the retrieval of the velocities vector is a public method that has
already been described, the computation of the particles accelerations vector

function accelerations = .
get_particles_accelerations (Particle_System)

is a private method. It begins with the determination of the number of particles and
the initialization of the acceleration vector

n_particles = length (Particle_System.particles);
accelerations = zeros (1, 3*n_particles);

and then starts a loop over all particles

for i_particle = 1 : length(Particle_System.particles)

After the retrieval of the current particle

Particle = Particle_System.particles(i_particle);
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we have to distinguish if the particle is a free moving particle or if it is glued to a certain
predefined position (which could also e.g. be the current mouse position). If we are
talking about a fixed particle

if Particle.fixed

there is no outer force that would otherwise lead to an acceleration of the particle

force = [0 0 0];

If the particle is free

else

we retrieve the current force vector of the particle, that has already been accumulated
in aggregate forces

force = Particle.force;
end

Since Newton we know that the effect (acceleration) resulting from a cause (force) acting
on a medium (mass) is simply the ratio of cause and medium. Using the index of the
current particle its acceleration vector is inserted at the correct place in the acceleration
vector

accelerations (3*i_particle - 2 : 3xi_particle) =
force/Particle.mass;

end

end

5.12 Private Method advance_particles_ages

The private method

function advance_particles_ages (Particle_System, step_time)

is called by advance time in every simulation time step, in which it updates the ages of
all particles. Therefore, in a loop over all particles

for i_particle = 1 : length(Particle_System.particles)

the current particle is retrieved

Particle = Particle_System.particles(i_particle);
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Its age is incremented by the step time of the current integration step and written back
into the age property of the particle

Particle.age = Particle.age + step_time;
end

end

5.13 Private Method update_graphics_positions

The public method advance time calls

function update_graphics_positions (Particle_System)

in every simulation time step, in order to move the graphical representations of all
particles, springs, and attractions to their new positions in the axes of the particle
system. The first loop moves the particles by a call to the corresponding update method
of the particle

for i_particle = 1 : length (Particle_System.particles)
Particle_System.particles(i_particle).update_graphics_position;
end

Similar loops update the graphical representations of the springs and attractions

for i_spring = 1 : length (Particle_System.springs)
Particle_System.springs(i_spring).update_graphics_position;

end

for i_attraction = 1 : length (Particle_System.attractions)
Particle_System.attractions(i_attraction).update_graphics_position;

end

Finally, the drawnow command makes sure that the moved objects are actually displayed
at their new locations

drawnow

end
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For performance reasons, drawnow should only be called once per time step.
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6 Particle Object

6.1 Class Definition and Properties particle

Just as the particle system, the particle class is derived from the handle class

classdef particle < handle

and defines the particle properties

properties

mass

position
velocity

fixed

lifespan

age = 0

force = [0 0 0]
graphics_handle

end

The mass, the initial position and velocity vectors, the flag that defines whether the
particle is fixed or free, and the life span of the particle can be defined in the call to the
particle constructor. The current age and the force accumulator are directly initialized
in the property definition block. The graphics handle that references the graphical
representation of the particle becomes defined in the particle constructor.

6.2 Constructor particle

The particle constructor
function Particle = particle

(Particle_System, mass, position, velocity, fixed, lifespan)

can be called with only one arguments — the particle system into which the particle will
be incorporated. In that case, the properties are defaulted to reasonable initial values
(unit mass, position at the origin, no velocity, free particle, and infinite life span)

if nargin == 1

mass = 1;
position = [0, O, O];

67



velocity = [0, 0, 0];

fixed = false;
lifespan = inf;
end

All properties (user supplied or default) are saved in the corresponding particle object
structure fields

Particle.mass = mass;
Particle.position = position;
Particle.velocity = velocity;
Particle.fixed = fixed;
Particle.lifespan = lifespan;

Finally, the particle is incorporated into the particle system by the private append
method of the particle class

Particle.append (Particle_System);

end

6.3 Private Method append

The private method

function append (Particle, Particle_System)

appends the particle to the particle array of the particle system. It might be a good
idea to force the particle system figure window to become visible, and raise it above all
other figures on the screen’’

figure (Particle_System.graphics_handle)

Now the graphical representation of the particle can be displayed in the axes as a ”big”
red dot and its graphics handle can be saved in the corresponding property of the
particle

Particle.graphics_handle =
line (
Particle.position (1),
Particle.position(2),

34Remember, it is very easy to adapt object behavior to your own taste in MATLAB source code. If
you don’t like it, change it.
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Particle.position(3),
>color’, [1 O O],
‘markersize’, 30,
‘marker’, ’.7);

If the particle is supposed to be fixed, the red dot is substituted by a star of the same

color

if Particle.fixed

set (Particle.graphics_handle,

’markersize’, 10, ’marker’, ’x’)

end

Finally, the particle can be copied into its new home

Particle_System.particles =

[Particle_System.particles, Particle];

end

6.4 Methods add_force, clear_force

The add_force method adds (nomen est omen) a force to the particle force accumula-
tor

function add_force (Particle, force)

Particle.force = Particle.force + force;

end

The clear_force method can be used to zero the current force accumulator (e.g. at
the beginning of a new simulation time step)

function clear_force (Particle)
Particle.force = [0 0O 0];

end
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6.5 Method delete

When you delete a particle object — e.g. by the use of kill particle — its graphical
representation has to be deleted too. This is done by a call to

function delete (Particle)

which determines if the particle’s graphics handle is still valid

if ishandle (Particle.graphics_handle)

and deletes the "red dot” if necessary

delete (Particle.graphics_handle)
end

end

6.6 Method set.fixed

The set.fixed method is an example of MATLAB’s property access methods that au-
tomatically execute whenever object properties are queried or set. Here

function set.fixed (Particle, fixed)

is called whenever you modify the fixed property of a particle after its instantiation.
This method is necessary because in that case we do not only want to save the demanded
state in the corresponding property

Particle.fixed = fixed;

but we also have to adjust the graphical representation of the particle

if Particle.fixed

set (Particle.graphics_handle,
’markersize’, 10, ’marker’, ’%*’)

else

set (Particle.graphics_handle,
’markersize’, 30, ’marker’, ’.7)

end

end
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6.7 Method set.position

If you modify the position property of a particle MATLAB automatically calls the
corresponding property access method

function set.position (Particle, position)

The new position is saved in the position property of the particle

Particle.fixed = fixed;

and graphical representation of the particle is updated

Particle.update_graphics_position;

end

6.8 Method update_graphics_position

As its name might already imply, the update_graphics_position method

function update_graphics_position (Particle)

updates the graphics position of a particle

set (Particle.graphics_handle,
’xdata’, Particle.position(1l),
’ydata’, Particle.position(2),
’zdata’, Particle.position(3));

end
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7 Spring Object

7.1 Class Definition and Properties spring

The spring class is derived from the handle class too

classdef spring < handle

and hosts the following properties

properties

particle_1
particle_2

rest

strength
damping
graphics_handle

end

which are the particles at the ends of the spring, the rest length (i.e. the length at
which the spring does not exert any force), the strength or stiffness, the coefficient of
the associated damper, and the graphics handle of the graphical spring representation.

7.2 Constructor spring

The spring constructor

function Spring = spring (Particle_System,
particle_1, particle_2, rest, strength, damping)

can be called with all six or only three arguments; as a minimum you have to supply the
particle system the spring has to appear in and the two particles the spring connects.
The other spring properties are then defaulted by the constructor to unit rest length,
unit strength, and no damping
if nargin ==
rest = 1;
strength = 1;
damping = O;
end

The remaining spring parameters are stored as spring properties too
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Spring.particle_1
Spring.particle_2
Spring.rest = rest;
Spring.strength = strength;
Spring.damping = damping;

particle_1;
particle_2;

and the spring is copied into the particle system

Spring.append (Particle_System);

end

7.3 Private Method append

The private append method of a spring
function append (Spring, Particle_System)
closely resembles the append method of a particle. It forces the particle system figure
window to become visible
figure (Particle_System.graphics_handle)
computes the spring ends positions, which are the positions of the particles at both ends
of the spring

spring_position(l, 1:3) = Spring.particle_1.position;
spring_position(2, 1:3) Spring.particle_2.position;

draws a blue line symbolizing the spring

Spring.graphics_handle =

line (...

spring_position(:, 1),
spring_position(:, 2),
spring_position(:, 3),

’linewidth’, 1,
’linestyle’, -7, .
’color’, [0 O 11);

and appends the spring to the spring array of the particle system

Particle_System.springs = [Particle_System.springs, Springl;

end
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7.4 Method delete

Just like the particle delete method, the spring delete method

function delete (Spring)

makes sure that the spring’s graphics handle is still valid

if ishandle (Spring.graphics_handle)

and deletes the blue line if possible
delete (Spring.graphics_handle)

end

end

7.5 Method update_graphics_position

The method to update the graphical representation of the spring

function update_graphics_position (Spring)

buffers the start and end positions of the spring as row vectors in a matrix

spring_position(l, 1:3) = Spring.particle_1.position;
spring_position(2, 1:3) Spring.particle_2.position;

in order to use the corresponding columns as spring coordinates vectors

set (Spring.graphics_handle,

’xdata’, spring_position(:, 1),
’ydata’, spring_position(:, 2),
’zdata’, spring_position(:, 3));

end
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8 Attraction Object

The attraction class definition, properties and methods (attraction, append, delete,
and update_graphics_position) are so very similar to their spring counterparts, that
it would be quite a waste of disk space to repeat and explain ”identical” code fragments
here.
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A Vector Projection

If @ and b are two arbitrary vectors, we are looking for the vector b, as the projection
of vector b along vector a (Figure 31).

A b

0 >
Figure 31: Projection vector b, of vector b along vector a

The dot product (aka scalar product or inner product) of two vectors a and b is usually
expressed as

ab = |a||b|cosa (21)
where |a| and |b| denote the magnitudes or norms of the vectors and « is the angle
between a and b. On the other hand, the cosine of an angle in a rectangled triangle can
be computed as the ratio of its adjacent leg and the hypotenuse

|bal

cos o = (22)
6]
Insertation of Equation 22 into Equation 21 and the cancelation of |b| leads to
b= b [bal _ b 23
a _‘G’H||b‘_‘a’Ha‘ (23)

which states that the dot product can also bee seen as the product of the norms of the
first vector and the projection of the second along the first. Equation 23 can easily be
solved for the norm |b,| of the projection vector

a_b a

bl = 0 =2 (24)
la]  a
Every vector can be expressed as the product of its norm and its unit vector
b a
bo = |ba| 75 = bal 7 (25)
|bal |al

Since b, and a are collinear (parallel), the unit vector a/|p,| is identical to the unit
vector ¢/ja|. Finally, Equation 24 can be used in Equation 25, leading to the general

equation of the projection vector
a a
m:<—w)—- (26)
la| ") |al
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