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1 Manual

1.1 Introduction

In this paper, we describe the utilization and genesis of an interactive website [1] you
can use to create, display and manipulate Platonic solids and other polyhedra.
“In geometry, a polyhedron [...] is a three-dimensional shape with flat polygonal faces,
straight edges and sharp corners or vertices”[2].
“In three-dimensional space, a Platonic solid is a regular, convex polyhedron”[3].
The polyhedron is dynamically created by simulating physical masses (vertices) con-
nected by springs and dampers (edges) covered by a convex hull (faces).1 You can use
the left mouse button to drag single vertices around and watch the “rubber polyhedra”
dilate, translate, and rotate, in order to pull the vertex back into its hull. Pressing the
right mouse button, you can orbit the camera around the scenery (section 2.4). With
the mouse wheel you can zoom in and out.
You can choose different polyhedra via a button list (figure 1.1).

Figure 1.1: Choose a polyhedron.

The website has been programmed in Unity [4] in C#, compiled for WebGL, and
should run in every2 modern browser.

1.2 Polyhedra

In this chapter we describe the different polyhedra you can choose on the website.

1Additionally, every vertex is connected to the origin via a soft spring (section 2.2.1.1), ensuring that
the polyhedron will always finally return to the center of the screen.

2Except for – who would have guessed – Internet Explorer which does not support WebAssem-
bly.
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Chapter 1. Manual 1.2. Polyhedra

1.2.1 Tetrahedron

The Platonic solid with four vertices is called a regular tetrahedron or triangular pyra-
mid. Obviously, the vertices are forced into a configuration of the four (Greek: tetra-)
equivalent equilateral triangular faces depicted in figure 1.2.

Figure 1.2: Tetrahedron (nvertices = 4)

The colors of the vertex spheres are dynamically chosen depending on the vertex po-
sitions in the corresponding RGB color cube (figure 2.6). The colors of the faces are
defined by the face normal vectors. Since the center perpendicular of every triangular
face pierces the opposite vertex (sphere), both have the same color.

1.2.2 Triangular dipyramid

There is no Platonic solid with five vertices. Nevertheless, the corresponding simulation
creates the highly symmetrical polyhedron in figure 1.3. It is called a triangular dipyra-
mid, because it can be ”constructed” by ”gluing” two (Greek: di-) triangular pyramids
(tetrahedrons) base-to-base.

Figure 1.3: Triangular dipyramid (nvertices = 5)
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1.2.3 Octahedron

The six vertices of this simulation inflate into a regular octahedron (figure 1.4), which
is one of the Platonic solids. The octahedron (Greek for ”eight faces”) is also called a
square dipyramid because it can be dissected into two pyramids with square bases. Seen
from another angle of view, the octahedron also is a triangular antiprism, because there
are (four) pairs of opposing parallel triangles, of which one has its vertices where the
other one has its edges.

Figure 1.4: Octahedron, square dipyramid, triangular antiprism (nvertices = 6)

1.2.4 Square antiprism

Yes – there is a Platonic solid with eight vertices; the regular hexahedron, aka the cube.
But no – interestingly, this polyhedron simulation does not create a cube, if you ask
it to arrange eight vertices in a minimum energy state. The astonishing result is the
square antiprism shown in figure 1.5, which consists of two squares3 (a ”bottom square”
and a ”top square”) that have been rotated (45°) into paraphase and eight triangles
connecting the edges of the bottom square with the vertices of the top square and vice
versa4. Obviously, this ”twisting” of the squares leads to a stable equilibrium of the
contradicting forces of the springs, while the cube, where the vertices of the squares
would ”face each other directly”, produces an indifferent equilibrium that will never be
reached in a simulation with random initial positions.

3You can easily identify the squares as two adjacent triangles of the same color (same plane normal).
4You have to try out this simulation! It is really cute to watch the vertices swarm around, until they
have come to an agreement on which of them makes up the bottom and top squares.
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Figure 1.5: Not a cube, but a square antiprism (nvertices = 8)

1.2.5 Icosahedron

In a simulation with twelve vertex spheres, all of them find their positions at the vertices
of the regular icosahedron (Greek for ”twenty faces”) shown in figure 1.6, which is another
one of the Platonic solids.

Figure 1.6: Icosahedron (nvertices = 12)

1.2.6 Not a dodecahedron

The Platonic solid with 20 vertices and twelve (Greek: dodeca-) faces is called a regular
dodecahedron. But again (as with the square antiprism) the 20 vertices minimum energy
configuration depicted in figure 1.7 is not a dodecahedron. We have not even found a
proper name for that irregular polyhedron. At first glance it seems to consist of triangles
and three squares (adjacent triangles of the same color). But if you look more carefully
at the ”squares” you can discover that the colors of the adjacent triangles do not have
the exact same color. Strange . . . !
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Figure 1.7: Not a dodecahedron (nvertices = 20)

1.2.7 Corona

This program has been written in 2020 (the first year of the corona virus). The polyhe-
dron with 128 vertices in figure 1.8 looks a little bit like the virus ... ,

Figure 1.8: Corona (nvertices = 128)
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2 Under the hood

2.1 Coordinate system

Unity uses a left-handed coordinate system:
• The thumb of your left hand points to your right (red x-axis in figure 2.1).
• The index finger of your left hand points up (green y-axis in figure 2.1).
• The middle finger of your left hand points away from you (blue z-axis in figure 2.1).

Figure 2.1: Coordinate system

2.2 Spheres

We model the vertices of the polyhedron as tiny spheres. Since the user is free to choose
any polyhedron, we do not know the number of spheres we have to create. Therefore,
we generate the spheres programmatically during the initialization of the program.
Unity can create a few 3D primitives by itself:

• Cube
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Chapter 2. Under the hood 2.2. Spheres

• Sphere

• Capsule

• Cylinder

• Plane

• Quad

Therefore, we can use a standard Sphere object as a prefab (figure 2.2)

Figure 2.2: Standard Sphere object as a prefab

create a new empty GameObject called Spheres (figure 2.3)

Figure 2.3: Empty GameObject (Spheres)

add a Mesh Filter and a Mesh Renderer as Mesh components to the empty Spheres
GameObject (figure 2.4)
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Chapter 2. Under the hood 2.2. Spheres

Figure 2.4: Mesh Filter and Mesh Renderer of Spheres

and attach a script by the name of Spheres_class (figure 2.5).

Figure 2.5: Script(Spheres_class)

In the script (section 2.2.1) we declare a public GameObject array of spheres that will
contain the vertex sphere objects to be instantiated (and therefore has an initial size of
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Chapter 2. Under the hood 2.2. Spheres

zero in figure 2.5) and the public GameObject new_sphere that we manually connect
to the sphere_prefab in figure 2.5.

2.2.1 Spheres_class

The Spheres_class script is attached to the empty Spheres GameObject. It creates
the spheres and the springs connecting the spheres to each other and the origin. In every
simulation step, it computes the common center of mass of all spheres and colorizes the
spheres according to their position with respect to the common center of mass.
Unity scripts automatically import some standard types from predefined namespaces
of which we only use the UnityEngine:
using UnityEngine ;

Every Unity script derives from the MonoBehaviour base class:
public class Spheres_class : MonoBehaviour
{

Before we define the Start function, we declare some (global) objects and variables as
properties. The array of spheres will be populated with the instantiated sphere objects:
public GameObject [] spheres ;

The new_sphere object has been initialized with the sphere_prefab in figure 2.5 and
will serve as an instantiation template for a new sphere:
public GameObject new_sphere ;

The initial polyhedron is an icosahedron with an initial1 vertex count of twelve:
public static int n_spheres = 12;

The center is computed in every simulation step as the current center of mass:
public static Vector3 center = new Vector3 (0, 0, 0);

2.2.1.1 Start

The start function is called before the first simulation step. It creates the spheres and
the springs:
void Start ()
{

In the function, we create the spheres container as a new GameObject array
1Since we want to access the number of vertices in other classes as well, n_spheres has to be a static
variable.

10



Chapter 2. Under the hood 2.2. Spheres

spheres = new GameObject [ n_spheres ];

and start a loop over every sphere to be created:
for (int i_sphere = 0; i_sphere < n_spheres ; i_sphere ++)
{

We create a new sphere in each loop pass using the sphere prefab (figure 2.5) and save
it in the spheres array:

spheres [ i_sphere ] = Instantiate ( new_sphere );

We want to have the opportunity to drag every single sphere with the mouse. Therefore,
we attach a Drag_object script (section 2.2.2) to every sphere:

spheres [ i_sphere ]. AddComponent < Drag_object >();

Even though it is not necessary for the function and it is only visible during the creation
and debugging of the program, we give every sphere its own name (Sphere_0, Sphere_1,
Sphere_2, . . . )2

spheres [ i_sphere ]. name = " Sphere_ " + i_sphere . ToString ();

We initialize the positions of the spheres randomly inside of a sphere3 with a radius of
10:

spheres [ i_sphere ]. transform . position =
10 * Random . insideUnitSphere ;

Every sphere is connected to the origin by a spring
SpringJoint origin_spring =
spheres [ i_sphere ]. AddComponent < SpringJoint >();

with a fixed rest length of zero4:
origin_spring . minDistance = 0;
origin_spring . maxDistance = 0;

We want to manually attach the springs to the centers of the spheres (where the vertices
of the polyhedron are located). Therefore, we switch off Unity’s automatic spring
anchor point choice

origin_spring . autoConfigureConnectedAnchor = false;

2Just like we do with our lawnmower robots and robot vacuum cleaners; it’s not necessary at all, but
it feels right.

3The interesting question “What happens if all spheres spawn at the same position (e. g. in the
origin)?” is discussed in appendix A.

4Since the springs to the origin have a very small spring constant of 1 (compared to the springs between
the spheres, having a spring constant of 10), the “unrealistic” rest length of zero will just slowly
move the whole polyhedron back to the center of the screen after a disturbance.
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and define both anchor points by ourselves:
origin_spring . anchor = new Vector3 (0, 0, 0);
origin_spring . connectedAnchor = new Vector3 (0, 0, 0);

A small spring constant of 1 tries to drag all spheres closer to the origin:
origin_spring . spring = 1;

}

In the following double loop we define the springs that connect every sphere to every
other sphere. The outer loop addresses every5 sphere
for (int i = 0; i < n_spheres - 1; i++)
{

while the inner loop defines the connection partner6 of the current sphere
for (int j = i + 1; j < n_spheres ; j++)
{

Once again, we attach a spring to the current sphere
SpringJoint inter_spring =
spheres [i]. AddComponent < SpringJoint >();

define “the other” sphere as the spring connection partner7

inter_spring . connectedBody =
spheres [j]. GetComponent <Rigidbody >();

use 10 as the spring rest length
inter_spring . minDistance = 10;
inter_spring . maxDistance = 10;

manually connect the springs to the center of the spheres
inter_spring . autoConfigureConnectedAnchor = false;
inter_spring . anchor = new Vector3 (0, 0, 0);
inter_spring . connectedAnchor = new Vector3 (0, 0, 0);

and give them a “stronger” spring constant of 10:
inter_spring . spring = 10;

}
}
}

5Except for the last one which has already been connected to all the others in the previous steps.
6A sphere should not be connected to itself and there should only be a spring connection from sphere
A to sphere B (and not an additional “parallel” one from sphere B to sphere A).

7We did not have to do this with the origin springs. If omitted, the connected body of a spring is
automatically set to the origin.
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2.2.1.2 Update

The Update function is called in every simulation step. It computes the common center
of mass of all the spheres and colorizes the spheres accordingly:
void Update ()
{

In order to find the mean center of mass vector of all spheres, we add up the position
vectors of all spheres
for (int i = 0; i < n_spheres ; i++)
{

center += spheres [i]. transform . position ;
}

and divide the sum by the number of spheres:
center /= n_spheres ;

In Unity (and many other graphics programs), colors can be defined by three light
intensity values (red, green, and blue, ranging from 0 to 1). According to the RGB color
cube in figure 2.6, black [0, 0, 0] consists of no red, no green, and no blue light, while
white [1, 1, 1] is created by full intensity red, green, and blue light. Therefore, e. g.
pure red [1, 0, 0] contains no green and no blue light, while yellow [1, 1, 0] is a
mixture of 100% red and 100% green light.

Green

Red

Blue

[1, 0, 0]

[1, 1, 0]

[0, 0, 0] [0, 1, 0]

[1, 0, 1]

[0, 1, 1]

[1, 1, 1]

Figure 2.6: RGB color cube

We now want to colorize every sphere according to its relative position with respect to
the center of the polyhedra. We start a loop over every sphere:
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for (int i = 0; i < n_spheres ; i++)
{

and compute its color via
Vector3 color =
( spheres [i]. transform . position - center ). normalized / 2 +
new Vector3 (1, 1, 1) / 2;

In detail: We calculate the vectorial distance between the current vertex and the center
of the polyhedra (spheres[i].transform.position - center). Since this 3D-vector
simply points from the center of the polyhedra to the current vertex, it can have any
length. We make it a unit vector by dividing it by its norm (.normalized); this vector
now describes any point on the unit sphere around the origin. Next, we cut the vector
in half (/ 2); the vector now defines the red sphere in figure 2.7 with a radius of 0.5.

Figure 2.7: Translated color sphere

Since this vector might have negative components, we cannot directly use it as a color.
Therefore, we translate the vector 0.5 along every coordinate axis, basically moving it
along the spacial diagonal (+ new Vector3(1, 1, 1) / 2). The vector now defines
the green sphere in figure 2.7 which is the inner sphere of the blue cube in figure 2.7.
Since the blue cube in figure 2.7 extends from [0, 0, 0] to [1, 1, 1], it represents
the full color cube of figure 2.6. As a consequence, the green color sphere in figure 2.7
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cannot reach colors in the eight vertices of the (blue) color cube in figure 2.7. The vertex
spheres of the polyhedron can therefore not have pure colors like black, white, red, green,
blue, yellow, cyan, and magenta; their colors are of an appealing looking pastel shade
(figure 1.8).
Finally, we use the computed color value to colorize the current sphere:

spheres [i]. GetComponent < MeshRenderer >(). material .color =
new Color(color.x, color.y, color.z);

}
}
}

2.2.2 Drag_object

The Drag_object script is attached to every sphere during its creation (section 2.2.1.1),
allowing the user to select and drag every sphere with her mouse. We use Matthias
Pieroth’s template [5], which works out the box: The class
using UnityEngine ;

public class Drag_object : MonoBehaviour
{

declares an offset between the position of the selected game object and the mouse position
when the user presses the mouse button in world coordinates
private Vector3 mOffset ;

and the z-coordinate of the game object in screen coordinates:
private float mZCoord ;

2.2.2.1 OnMouseDown

If the user clicks the object
void OnMouseDown ()
{

the current z-coordinate of the game object in screen coordinates is saved
mZCoord =
Camera .main. WorldToScreenPoint ( gameObject . transform . position ).z;

and the current distance between the position of the game object and the mouse position
in world coordinates is calculated:
mOffset = gameObject . transform . position - GetMouseAsWorldPoint ();
}
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2.2.2.2 GetMouseAsWorldPoint

OnMouseDown (section 2.2.2.1) uses the function
private Vector3 GetMouseAsWorldPoint ()
{

that returns the current mouse position in world coordinates using the z-coordinate of
the selected object as the z-coordinate of the mouse position. This allows the user to
drag the object in x- and y-directions on the screen.8 The function reads the current
mouse position in screen coordinates
Vector3 mousePoint = Input. mousePosition ;

substitutes the z-coordinate of the mouse position by the z-coordinate of the object
mousePoint .z = mZCoord ;

and returns the modified mouse position in world coordinates:
return Camera .main. ScreenToWorldPoint ( mousePoint );
}

2.2.2.3 OnMouseDrag

If the user moves the mouse while keeping the button pressed
void OnMouseDrag ()
{

the current mouse position in world coordinates is computed, translated by the initial
distance between object and mouse, and finally used as the new position of the object:
transform . position = GetMouseAsWorldPoint () + mOffset ;
}
}

2.3 Surfaces

The surfaces of the polyhedron are triangles, each connecting three vertices. We could
create and display all possible triangles formed by three vertices each: The inner vertices
would not be visible; we would automatically see the hull of the polyhedron only. While
this method would produce acceptable results for polyhedrons with a very small number

8Yes, it would be nice to control the z-coordinate of the object too. But since our traditional mouse
can only move in two directions (not every user owns a space mouse [6]), we are reasonably satisfied
with the x-y-drag of the spheres on the flat screen.
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of vertices (tetrahedron, octahedron, ...), the number of triangles would explode for a
larger number of vertices: The corona polyhedron (figure 1.8) with 128 vertices e. g.
would consist of more than a quarter of a million inner (and therefore useless) triangles:

nchoosek(128, 3) = binomial(128, 3) =
(

128
3

)
= 128!

3! · 125! = 341 376 (2.1)

While modern browsers would still display and even simulate such a triangle mon-
ster, their frame rate would drastically drop to non-acceptable values even on high-
performance machines.
The alternative is to calculate the 3D convex hull9 of the polyhedron which consists of
only a few triangles: Euler’s polyhedron formula [7] states that the number of vertices n,
the number of edges e, and the number of faces f of any polyhedron satisfy the following
equation:

v − e + f = 2 (2.2)
If the polyhedron is triangulated (i. e. its hull consists of only triangles) every triangle
has tree edges. Therefore, the number of edges would be three times the number of faces
if all faces were separated from each other. But, in a closed polyhedron every edge is
shared between two faces, cutting the number of edges in half:

e = 3
2f (2.3)

If we use equation (2.3) in equation (2.2) we can find a linear relation between the
number of faces with respect to the number of vertices in a triangulated polyhedron:

v − 3
2f + f = 2

v − 1
2f = 2

f = 2v − 4 (2.4)

Using equation (2.4) for the corona polyhedron, the number of faces of its convex hull
can never exceed10 252

fcorona = 2vcorona − 4 = 2 · 128− 4 = 252

which is significant less than the number 341 376 in equation (2.1) and quite acceptable
for a dynamic simulation in a browser.
Unfortunately, finding the 3D convex hull of a given set of points is not a trivial task at
all [8]. Fortunately, Oskar Sigvardsson wrote a very well documented “implementation

9Shrink a rubber sheet around all vertices.
10The number of convex hull faces of the corona polyhedron can easily be less than 252: Imagine the four

“outermost” vertices forming a tetrahedron and all the other vertices lying inside this tetrahedron.
The convex hull will then just consist of the four triangular tetrahedron faces.
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of the Quickhull algorithm for generating 3d convex hulls from point clouds, written
for Unity.” [9] that works perfectly straight out of the box (section 2.3.2). The convex
hull algorithm returns the vertices, triangles, and normals of a single mesh defining the
convex hull. Unfortunately, Unity does not easily11 allow the triangles of a single mesh
to have different colors. Therefore, we will use one mesh per triangle, which is much
more of a burden for the GPU, but since the convex hull only consist of a few faces . . .
The dynamic creation of the surfaces is very similar to the creation of the spheres:
We use a standard Surface object as a prefab (figure 2.2), create a new empty Game-
Object called Surfaces (figure 2.3), add a Mesh Filter and a Mesh Renderer as Mesh
components to the empty Surfaces GameObject (figure 2.8),

11Yes, there are special particle shaders that can render the faces of a mesh in different colors, but
these shaders might run into other problems regarding shadows, reflections, transparency, . . .
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Figure 2.8: Mesh Filter and Mesh Renderer of Surfaces

and attach a script by the name of Surfaces_class (figure 2.9).

19



Chapter 2. Under the hood 2.3. Surfaces

Figure 2.9: Script(Surfaces_class)

In the script (section 2.3.1) we declare a public GameObject array of surfaces that
will contain the surface objects to be instantiated (and therefore has an initial size of zero
in section 2.3.1) and the public GameObject new_surface that we manually connect
to the surface_prefab in figure 2.9.

2.3.1 Surfaces_class

This class imports the necessary namespaces (including the GK namespace of the convex
hull class (section 2.3.2))
using GK;
using System . Collections . Generic ;
using UnityEngine ;

public class Surfaces_class : MonoBehaviour
{

and declares its properties: The spheres object is a reference to the array holding all
the spheres. We will use it to access the Spheres_class component in order to read the
current number of spheres:
private GameObject spheres ;
public Spheres_class Spheres ;

The surfaces array will be populated by all the surfaces to be created
public GameObject [] surfaces ;

while new_surface will use its connection to the surface_prefab (figure 2.9) to instan-
tiate a new surface
public GameObject new_surface ;

and n_surfaces will be computed as the number of surfaces via equation (2.4):
private int n_surfaces ;
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vertices, triangles, and normals will describe one of the surfaces
private Vector3 [] vertices ;
private int [] triangles ;
private Vector3 [] normals ;

and the meshes array will hold the meshes of the surfaces:
public Mesh [] meshes ;

The following properties are used by the convex hull generator:
private ConvexHullCalculator calc;
private List <Vector3 > verts;
private List <int > tris;
private List <Vector3 > norms;
private List <Vector3 > points ;

2.3.1.1 Start

During the initialization
void Start ()
{

we create the objects necessary for the convex hull computation
calc = new ConvexHullCalculator ();
points = new List <Vector3 >();
verts = new List <Vector3 >();
tris = new List <int >();
norms = new List <Vector3 >();

find the game object that holds the spheres
spheres = GameObject .Find(" Spheres ");

access its class component
Spheres = spheres . GetComponent < Spheres_class >();

and use the number of spheres defined in the class to compute the (maximum) number
of surfaces according to equation (2.4):
n_surfaces = 2 * Spheres_class . n_spheres - 4;

We can now define an array of game objects that can hold the maximum12 number of
surfaces to expect:
12Yes, we could create and destroy surface objects on the fly as we need them; but since we know the

maximum number of surfaces and this number is not too high, it might be more performant to only
have to create the surfaces once and make a few of them invisible if we do not need them.
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surfaces = new GameObject [ n_surfaces ];

Since we want to access the meshes of the surfaces, we create an equally sized array of
meshes:
meshes = new Mesh[ n_surfaces ];

Since we want to create single triangle meshes, each mesh has three vertices, each triangle
is defined by three vertices, and there is a normal vector in each vertex:
vertices = new Vector3 [3];
triangles = new int [3];
normals = new Vector3 [3];

We are now ready to create the surfaces in a loop:
for (int i_surface = 0; i_surface < n_surfaces ; i_surface ++)
{

We instantiate the current surface
surfaces [ i_surface ] = Instantiate ( new_surface );

give it an individual name (footnote (2))
surfaces [ i_surface ]. name = " Surface_ " + i_surface . ToString ();

and copy its mesh into the mesh array:
meshes [ i_surface ] =
surfaces [ i_surface ]. GetComponent <MeshFilter >(). mesh;

}
}

2.3.1.2 Update

In every simulation step
void Update ()
{

we wipe the points list of the convex hull clean
points .Clear ();

and add the current position of every sphere to the list:
for (
int i_sphere = 0;
i_sphere < Spheres_class . n_spheres ;
i_sphere ++)
{

points .Add( Spheres . spheres [ i_sphere ]. transform . position );
}
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We can now forward the point list to the convex hull generator (section 2.3.2) and ask
it to compute the mesh of the hull:
calc. GenerateHull (points , true , ref verts , ref tris , ref norms );

The generator provides three vertex indices for every triangle, allowing us to determine
the number of triangles found:
int n_triangles = tris.Count / 3;

In a loop over all triangles of the convex hull
for (int i_triangle = 0; i_triangle < n_triangles ; i_triangle ++)
{

we make these triangles visible:
surfaces [ i_triangle ]. SetActive (true );

Every surface consists of three vertices (three entries in the verts list), three vertex
indices (three entries in the tris list) and one normal vector in each vertex (three
entries in the norms list). Therefore, we start loop over the three vertices of the current
surface:

for (int i_vertex = 0; i_vertex < 3; i_vertex ++)
{

In the loop we copy the entries from the lists (verts, tris, norms) provided by the hull
generator13 to the corresponding components of the vertices, triangles, and normals
arrays

vertices [ i_vertex ] =
verts[tris [3 * i_triangle + i_vertex ]];

triangles [ i_vertex ] =
tris [3 * i_triangle + i_vertex ] % 3;

normals [ i_vertex ] =
norms [3 * i_triangle + i_vertex ];

}

and use the current vertices, triangles, and normals arrays for the definition of the
current surface mesh:

meshes [ i_triangle ]. vertices = vertices ;
meshes [ i_triangle ]. triangles = triangles ;
meshes [ i_triangle ]. normals = normals ;

13The three returned lists define one big mesh; We want to color each surface individually and therefore
have to split up the mesh into an array of single meshes.
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We want to use the normals of the triangles to define their colors. In unity, every vertex
has its own normal, but the hull generator provides all vertices of a single triangle with
the same normals. Therefore, we just use the normal of the “first” vertex of the current
mesh:

Vector3 normal = meshes [ i_triangle ]. normals [0];

The color of the current triangle is defined similar14 to the colorization of the spheres in
section 2.2.1.2:

Vector3 color =
-( normal ). normalized / 2 + new Vector3 (1, 1, 1) / 2;

We can now colorize the current surface:
surfaces [ i_triangle ]. GetComponent < MeshRenderer >(). material .←↩

color =
new Color(color.x, color.y, color.z);

}

Since we declared the array of surfaces with the maximum number of surfaces in mind
(footnote (10)), the final step is to make the currently unused surfaces invisible:
for (
int i_triangle = n_triangles ;
i_triangle < n_surfaces ;
i_triangle ++)
{

surfaces [ i_triangle ]. SetActive (false );
}
}
}

2.3.2 ConvexHullCalculator

Oskar Sigvardsson wrote about his convex hull calculator:
“An implementation of the quickhull algorithm for generating 3d convex hulls.
The algorithm works like this: you start with an initial ‘seed’ hull, that is just a simple
tetrahedron made up of four points in the point cloud. This seed hull is then grown until
it all the points in the point cloud is inside of it, at which point it will be the convex
hull for the entire set.
All of the points in the point cloud is divided into two parts, the ‘open set’ and the ‘closed
set’. The open set consists of all the points outside of the tetrahedron, and the closed
14Using a negative sign gives the surface the same color as its opposite (diametral) vertex sphere. This

becomes most obvious in the tetrahedron (figure 1.2).
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set is all of the points inside the tetrahedron. After each iteration of the algorithm, the
closed set gets bigger and the open set get smaller. When the open set is empty, the
algorithm is finished.”[9]
The algorithm is well documented and very reliable.
public void GenerateHull (

List <Vector3 > points ,
bool splitVerts ,
ref List <Vector3 > verts ,
ref List <int > tris ,
ref List <Vector3 > normals )

Its input parameters are the point cloud (points) as a list of 3D-vectors and the boolean
splitVerts that decides whether every triangle should15 have its own vertices.
Since the output parameters verts, tris, and normals are explicitly called by reference,
we can directly address and reuse them without any extra memory overhead.

2.4 Camera

The user can use her mouse (with the right button pressed) to orbit the camera around
the scenery.

2.4.1 Mouse Orbit

For this purpose, we attach the Camera_class

using UnityEngine ;

public class Camera_class : MonoBehaviour
{

to the default camera object and declare and define the initial distance of the camera
from the origin
float distance = 25;

the constant factors translating the mouse (scroll) speed to the orbit angles and the
zoom rate
readonly float speed_x = 3f;
readonly float speed_y = 3f;
readonly float speed_zoom = 20f;

15If two faces of a mesh share their vertices, Unity tries to smooth the corresponding edge, which
would be useful if we wanted to create a smooth surface. In our case we want single, separated
triangles and call the hull generator with the splitVerts parameter set to true (section 2.3.1.2).
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and the constant distance limits:
readonly private float distance_min = 25f;
readonly private float distance_max = 100f;

Finally, we initialize the orbit angles:
azimuth: left and right in the x-z-plane
elevation: up and down with respect to the x-z-plane
private float azimuth = 300f;
private float elevation = 0f;

In every simulation step
void LateUpdate ()
{

we check if the user pressed the right mouse button
if (Input. GetMouseButton (1))
{

in which case we in- or decrease the orbit angles according to the mouse position change:
azimuth += Input. GetAxis ("Mouse X") * speed_x ;
elevation -= Input. GetAxis ("Mouse Y") * speed_y ;

}

With the help of Unity we compute the quaternion representation of the current atti-
tude from the Euler angles:
Quaternion rotation = Quaternion .Euler(elevation , azimuth , 0);

We use a scroll wheel input to alter the distance of the camera from the origin and limit
it to the already declared limits:
distance =
Mathf.Clamp( distance - Input. GetAxis ("Mouse ScrollWheel ")
* speed_zoom , distance_min , distance_max );

Using the negative distance as its z-component, we define the position vector in the local
camera coordinate system:
Vector3 neg_distance = new Vector3 (0.0f, 0.0f, -distance );

Since we need the position of the camera in the global coordinate system, we have to
transform the position vector from the local camera system to the global world system.
Unity makes this very easy: The multiplication operator of a quaternion object is
overloaded, enabling us to multiply a quaternion and a 3D vector, just like we would
multiply a transformation matrix with the vector, while at the same time avoiding the
gimbal lock problem [10] with the Euler angles in the transformation matrix:
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Vector3 position = rotation * neg_distance ;

Finally, we transfer the new attitude and position to the actual camera:
transform . rotation = rotation ;
transform . position = position ;
}
}

2.5 Canvas

We want to give the user the choice between different polyhedrons by offering her a
button list (figure 1.1). Buttons are children of a canvas. Therefore, we use a Canvas
GameObject with the default Screen Space Overlay Render Mode that keeps the can-
vas fixed on the screen even if we move the camera around (figure 2.10).
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Figure 2.10: Canvas

We tell the Canvas Scaler to use a Constant Pixel Size as its UI Scale Mode which
allows the button list (figure 1.1) to scale with the browser zoom level.

2.5.1 Buttons

We define seven Button GameObjects as children of the Canvas and name them 4, 5, 6,
8, 12, 20, and 128 (figure 2.11).
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Figure 2.11: Buttons as children of the Canvas

Every button gets a width of 120 and a height of 30 pixels and an appropriate position
with respect to the bottom center of the canvas (figure 2.12).

Figure 2.12: Button size and position

Additionally, we define the On Click event of the button by calling the Restart_Scene
method of the Button_clicked class (figure 2.13).

Figure 2.13: Button On Click event

2.5.1.1 Button_clicked

The Button_clicked class additionally imports the SceneManagement namespace
using UnityEngine ;
using UnityEngine . SceneManagement ;

29



Chapter 2. Under the hood 2.6. Lights

public class Button_clicked : MonoBehaviour
{

and defines the Restart_Scene method that is called when the user presses the corre-
sponding button:
public void Restart_Scene ()
{

In the method, we reload the whole scene
SceneManager . LoadScene ( SceneManager . GetActiveScene (). name );

and interpret the name16 of the button as the number of vertices of the polyhedron to
be created:
Spheres_class . n_spheres = int.Parse(name );
}
}

2.5.1.2 Button text

As indicated in figure 2.11, every button automatically gets a Text object as a child,
that we provide with the corresponding information (figure 2.14)

Figure 2.14: Button text

2.6 Lights

For the illumination of the scene, we introduce six Directional Light GameObjects
(figure 2.15)

16Using the name of an object for the transfer of relevant information might probably not win the first
price in the Best Object Oriented Programming Style competition – but it does the job.
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Figure 2.15: Six directional lights

pointing in all positive and negative axis directions (figure 2.16) leading to quite realistic
shadows and reflections (figure 1.6).

Figure 2.16: Directions of the lights

We achieve the different light directions by rotating the default light - pointing in the
positive z-direction (figure 2.17a) - about appropriate axes (e. g. figure 2.17b).

(a) Light in positive z-direction (b) Light in negative z-direction

Figure 2.17: Lights in positive and negative z-directions

Interestingly, the positions of the lights do not matter at all. Even if we leave them all
at their default positions at the origin (figure 2.17), the hulls of the polyhedrons are also
illuminated “on the outside”.
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A Initial spheres positions

What happened if we initially positioned all spheres (vertices of the polyhedron) at the
origin?
If we use
spheres [ i_sphere ]. transform . position = new Vector3 (0, 0, 0);

instead of
spheres [ i_sphere ]. transform . position =
10 * Random . insideUnitSphere ;

in section 2.2.1.1, all spheres are initially positioned at
[
0 0 0

]
and the springs con-

necting the spheres immediately start pushing them apart along the x-axis1 until they
reach their final positions along a straight line (figure A.1).

Figure A.1: All twelve spheres are positioned along the x-axis.

Even though this indifferent2 configuration is not an energy-optimal equilibrium, the
Nvidia PhysX engine [13] that Unity uses for the simulation of its 3D-physics is
stable enough to keep the state of figure A.1 infinitely3 long.
If we now grab one of the spheres with the mouse and move it up or down or if we use
initial random positions in the x-y-plane
spheres [ i_sphere ]. transform . position =
new Vector3 ( Random .value , Random .value , 0);

all spheres magically arrange themselves in the x-y-plane into one of the stable configu-
rations depicted in figure A.2.

1The fact that the springs only push in x-direction seems pretty arbitrary ... One of the many unsolved
Unity mysteries ...

2Think of a perfect sphere on a perfect pinhead: As long as you do not breathe and not even think
about giving the sphere the slightest push, the sphere could balance on the pinhead forever.

3The inappropriate use of the word “infinitely” is typical engineer’s hubris. Numerical rounding errors
should definitely destabilize the indifferent equilibrium after a while. On the other hand, even after
“many” minutes of simulation, all spheres remain in the straight line configuration of figure A.1.
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Appendix A. Initial spheres positions

(a) Two center spheres (b) One center sphere

Figure A.2: All spheres are positioned in the x-y-plane.

We can manually switch between figure A.2a and figure A.2b by dragging spheres from
the “circle” to the “center” and vice versa. We could not manually create configurations
with less than one or more than two center spheres.
If we use 20 (or more) spheres, stable arrangements with two (or more) outer circles are
possible (figure A.3).

Figure A.3: Stable configuration of 20 spheres in the x-y-plane

All previously described linear or planar sphere arrangements have one major drawback:
The convex hull generator (section 2.3.2) relies on points defining a true 3D-space and
therefore complains if all points lie on a 2D-plane or even on a 1D-line: ”Can’t generate
hull, points are coplanar.” in every simulation step.
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