
RevSim
Revolution Simulator

Jörg J. Buchholz

November 16, 2019

https://m-server.fk5.hs-bremen.de/revsim/revsim.html
http://prof.red

1 Manual

1.1 Introduction

RevSim (Revolution Simulator) is a real-time, pilot-in-the-loop, virtual reality simu-
lator of a Revolution [1] kite. RevSim has been programmed in Unity [2] in C#,
compiled for Oculus [3] headsets (Rift, ...), and is available in the Oculus Store with
an Oculus key or via sideloading [4].
A Revolution kite basically1 consists of two connected triangles (figure 2.6) that are
controlled via four lines by two handles. By symmetrically and/or asymmetrically ro-
tating the handles, you can control the angles of attack and the angles of sideslip of
both triangles independently. As a result, you can pin the kite at every2 position and
attitude in the sky.

1.1.1 25 years later

A quarter century ago, we created the first ancient RevSim version (figure 1.1).

Figure 1.1: 1993 RevSim (original screenshot in German)

It used EGA-graphics (320× 200 pixels) and the mouse to control the kite.
1Yes, real-world Revolutions have flexible spars, bulging sails, wind-permeable mesh grids, stabilizing
bridles, . . . This first RevSim version has two triangles.

2RevSim even allows you to alter the line length with a thumbstick on your controller, offering you a
full quarter cube of flying space, instead of the quarter spherical surface of a real-world kite.

2

Chapter 1. Manual 1.2. Installation

A few things have improved since then: Today, we use 3D modeling and simulation tools
like Unity and virtual reality headsets like the Oculus (Rift, . . .) to create realistic
3D images and sounds, allowing us to deeply immerse into the scenery with an adequate
perception of depth. But most of all, we hold two virtual reality controllers in our hands
that are precisely tracked with respect to their position and attitude in 3D space. Thus,
for the first time, we are offered a nearly perfect3 way to emulate the handles of a quad
line kite.

1.2 Installation

You can download RevSim directly from [4] and sideload it by allowing the VR environ-
ment to install and run apps that are not available at the Oculus store. Alternatively,
you might ask us (buchholz@hs-bremen.de) to send you an Oculus key you can use to
download and install RevSim officially from the Oculus store.

1.3 Operation

Just put on the headset, take both controllers in your hands and you are ready to fly the
kite. If you look down at your hands in VR, you see two handles (figure 2.19) moving in
sync with the controllers in your hands and two help plates explaining the basic button
and thumbstick functions:
Right controller button A: Reset kite position
Right controller button B: Reset all
Right controller thumbstick forward: Increase wind speed
Right controller thumbstick right: Increase air drag
Left controller button X: Tutorial (constant drag, . . .)
Left controller button Y: Help/data/off
Left controller thumbstick forward: Increase line length
Keyboard key 1: Music and sound on/off
Keyboard key 2: Lines on/off
Keyboard key 3: Controller help on/off
You can reset the game, alter the wind speed, the line length, and the air drag and step
through four tutorials that might help you control the kite.

3The only thing missing is a true feedback of the forces the kite exercises on the lines and thus on the
pilot; but that’s another story . . .

3

mailto:buchholz@hs-bremen.de?subject=RevSim%20key&body=Please%20send%20me%20a%20RevSim%20Oculus%20key.%0D%0A%0D%0A

2 Objects

This chapter1 explains the modeling and the hierarchy of the objects we use in Unity
(figure 2.1).

Figure 2.1: Objects hierarchy

2.1 Coordinate system

Unity uses a left-handed coordinate system:
• The thumb of your left hand points to your right (red X-axis in figure 2.2).
• The index finger of your left hand points up (green Y-axis in figure 2.2).
• The middle finger of your left hand points away from you (blue Z-axis in figure 2.2).

1If you are just a simple user of RevSim, you might not want to read any further; the rest of this
document is just boring modeling and programming stuff. And, we have to apologize for the fact
that we use German names for objects, functions and variables for . . . reasons.

4

Chapter 2. Objects 2.2. Kite

Figure 2.2: Coordinate system

2.2 Kite

The kite consist of two isosceles triangles2 connected to each other by a hinge joint and
to the handles by four configurable joints (representing the lines). If you zoom in at
figure 2.4 you can recognize the joints as small brown and gray arrows indicating the
free rotational axes of the joints.

Figure 2.3: Kite with joints

2To be precise, we model the kite as a true three-dimensional object by extruding each triangle into a
triangular prism with a thickness of a few millimeters.

5

Chapter 2. Objects 2.2. Kite

Since we will position the player with the handles at the origin of the X-Z-plane in
section 2.3, we initialize the Z-component of the kite’s Position at 10 (figure 2.4) in
order to locate the kite 10m in front of the player3 .

Figure 2.4: Kite: Transform

2.2.1 Right sail

Unity can only create a few 3D primitives by itself:
• Cube

• Sphere

• Capsule

• Cylinder

• Plane

• Quad

For the sails we need two triangular prisms (figure 2.3) that we cannot directly derive
from Unity’s primitives. Fortunately, it is very easy to model a “complicated” 3D
object in another 3D modeling program and then import it as a new object into Unity.
Therefore, we use Sketchup [5] to extrude a triangle into a triangular prism (figure 2.5).

3Unity’s physics engines use the International System of Units (m, kg, s, . . .); one length unit
corresponds to one meter, gravity is 9.81ms2 . . .

6

Chapter 2. Objects 2.2. Kite

Figure 2.5: Sail in Sketchup [5]

Actually, we do not even need to explicitly import the Sketchup file; we just use the
mouse to drag and drop the .skp file into Unity’s asset window and then copy the asset
into the scene twice to come up with the sail in figure 2.5.

Figure 2.6: Right sail in Unity

7

Chapter 2. Objects 2.2. Kite

As indicated in figure 2.1, the right sail (Segel rechts) is a child of the kite (Drachen)
in the object’s hierarchy. Its pivot point is at its bottom vertex which therefore has to
have an X-position of half a meter (to the right) with respect to the kite itself (figure 2.7),
assuming the sail has a span of one meter. Accordingly, the pivot point of the left sail
has an X-position of −0.5.

Figure 2.7: Right sail: Transform

Unity’s powerful physics engines perform collision detection and solve the differential
equations of motion of all objects numerically; all we have to do is to add a Rigidbody
component (figure 2.8) to the object and define the aerodynamic forces acting on the
object in section 3.1. In the Rigidbody component, we give the sail a Mass of 0.2,
define the Linear and Angular Drag coefficients as 1 and switch on standard gravity
(gY = −9.81).

Figure 2.8: Right sail: Rigidbody

The right sail is connected to the left sail by a Hinge Joint which allows the right sail
to rotate about its X-axis with respect to the left sail. Therefore, we add a Hinge Joint
component to the right sail and define in figure 2.9 that

• the Connected Body is the left sail (Segel links)
• the right sail Anchor is located in the upper left corner of the right sail
• the hinge joint allows a free rotation about the X-axis
• the Connected Anchor is located in the upper right corner of the left sail

8

Chapter 2. Objects 2.2. Kite

Figure 2.9: Right sail: Hinge Joint

The right sail is connected to the right handle by two lines. Unfortunately, lines are still
quite difficult to simulate. Lines are flexible but non-stretchable and have a very small
mass. The correct way to simulate a line would be to use a huge number of very small,
light cylinders connected via very stiff springs. Since the natural frequency ω0 of a mass
spring system is

ω0 =
√
c

m

where c is the spring constant and m is the mass, such a stiff system would have to be
integrated with a very high sampling rate which is inconsistent with the fixed sampling
rates of current virtual reality systems (e. g. 90Hz).
Therefore, we add two Configurable Joints (figure 2.9, figure 2.11) to the right sail
that connect the kite to the right handle (Handle rechts). The trick is to limit the X
Motion, the Y Motion, and the Z Motion in figure 2.10 to a Linear Limit of 10 which
is the initial line length. This allows the kite to float freely at any position in 3D space
as long as its distance to the handles is less than 10m. The graphical representation of
the (possibly sagging) lines is later done in section 3.11.

9

Chapter 2. Objects 2.3. Player

Figure 2.10: Right sail: Upper Configurable Joint

Figure 2.11: Right sail: Lower Configurable Joint

The left sail has corresponding mirrored properties.

2.3 Player

As indicated in figure 2.1, the player (Spieler) is the parent of the camera (section 2.3.1)
and the handles (section 2.3.1). We give the player a height of 1.5 (figure 2.12), which
roughly corresponds to the eye height of the author.

10

Chapter 2. Objects 2.3. Player

Figure 2.12: Player: Transform

2.3.1 Camera

During the game, the positions and attitudes of both the camera and the handles will be
defined by the actual positions and attitudes of the headset and the real-world controllers
(section 3.7 and section 3.8). Therefore we can simply define the initial Position of the
camera at the origin of its parent (figure 2.13).

Figure 2.13: Camera: Transform

The camera object has a predefined camera component (figure 2.14) that we use out-of-
the-box with the slight adjustment of decreasing the Near Clipping Plane value from
0.3 to 0.1, in order to prevent the handles from disappearing if we hold them closer to
our face.

11

Chapter 2. Objects 2.3. Player

Figure 2.14: Camera: Camera

2.3.2 Handles

We create a Handles object (figure 2.15) as a parent for the right handle (Handle rechts
in figure 2.1) and the left handle.

12

Chapter 2. Objects 2.3. Player

Figure 2.15: Handles

During game development, we can change the Rotation angles (figure 2.16) of the
Handles object in order to pitch, roll, and yaw both handles simultaneously about the
pivot point in figure 2.15.

Figure 2.16: Handles: Transform

Both handles are scaled (figure 2.17) Cubes4 leading to their elongated shape in fig-
ure 2.15. The initial Position of the right handle in figure 2.17 is only useful during
game development; in the game, the handle objects always synced with the real-world
controllers (section 3.7).

Figure 2.17: Right handle: Transform

4Yes, real Revolution handles are curved cylinders resulting in a nonlinear control characteristic.
Maybe in one of the next RevSim versions . . .

13

Chapter 2. Objects 2.3. Player

The handle has to be a Rigid Body; the joint (figure 2.10) between the sail and the
handle can only connect two rigid bodies.

Figure 2.18: Right handle: Rigidbody

On the other hand – as already stated – the handle is directly synced with the real-world
controllers. The parameters in figure 2.18 (Mass, Drag, . . .) are therefore completely
irrelevant; we just leave them at their initial values.

2.3.2.1 End caps and help plates

Figure 2.19 shows white end caps at the top (and the bottom) of the handles and two
help plates glued to the top outer sides of the handles.

Figure 2.19: End caps and help plates

End caps The end caps are primitive Spheres, are children (Handle rechts oben
and Handle rechts unten in figure 2.1) of the handle and do not really have physical

14

Chapter 2. Objects 2.4. Ground

functions; they merely exist for decorative purposes. Since the upper end cap of the
right handle is a child of the right handle it inherits the Scale of its parent (figure 2.17).
Therefore, its Position in figure 2.20 has to move up 50% with respect to the handle
length. For the same reason, the Scale of the end cap has to invert the Scale of the
handle in its Y-component (figure 2.20).

Figure 2.20: Upper right end cap: Transform

Help plates The help plates in figure 2.19 inform the inexperienced user about func-
tions of the buttons and thumbsticks on the controllers. They are children (Hilfe
rechts in figure 2.1) of the handles too and therefore have to be positioned and scaled
considering the Scale of their parents (figure 2.17) too (figure 2.21).

Figure 2.21: Right help: Transform

We create the help plates as objects with 50% transparency in CorelDraw [6], export
them as .png files, import them into Unity’s Assets folder, and change the Texture
Type in the Import Settings to Sprite (figure 2.22).

Figure 2.22: Right help: Import Settings

2.4 Ground

The ground (Boden) is just a square with an edge length of 500m (figure 2.23).

15

Chapter 2. Objects 2.4. Ground

Figure 2.23: Ground

Since Unity’s Plane primitive is a 10× 10 square, we have to apply a Scaling factor of
50 (figure 2.24). As depicted in figure 2.31, we want the kite to be 10m in front of the
player (Z = 0) and the coastline to be 5m in front of the kite. The center of the ground
therefore has to be at a Z-position of -235 (figure 2.24)

Figure 2.24: Ground: Transform

Since the ground itself does not move, it does not have to be a rigid body with Mass,
Drag, . . . However, if we want the kite to stay above the ground we have to give it a
Mesh Collider (figure 2.25) that applies an upward force to the kite if it touches the
ground.

Figure 2.25: Ground: Mesh Collider

We want the ground to look like a sandy beach. One of the great pleasures of working
with Unity is the fact that you can download user generated packages of about every
imaginable kind from Unity’s Asset Store; most of them for a small amount of money,

16

Chapter 2. Objects 2.4. Ground

some of them even for free. We download a free Sand textures pack and use its Sand
pattern 01 as the material for the Mesh Renderer (figure 2.26).

Figure 2.26: Ground: Mesh Renderer

Even though the material is just a 2D texture, it allows the renderer to create very
natural looking ground waves (figure 2.27).

Figure 2.27: Ground detailed

2.4.1 Wind Zone

We use a Wind Zone object (figure 2.28) to make the palms (to be implemented in
section 2.8) bend in a realistic animated fashion.5

Figure 2.28: Wind Zone

5Unfortunately, a Wind Zone can only move particles, trees, grass and other terrain objects but does
not have aerodynamic effects on rigid bodies like the kite. Therefore, we have to compute the aero-
dynamic forces on the kite by ourselves in section 3.1. We expect Unity to implement aerodynamic
forces on all objects in a future release . . .

17

Chapter 2. Objects 2.5. Sea

Since we implemented the Wind Zone as a child of the ground, Unity automatically
adjusts the Position and Scale values of the Wind Zone with respect to its parent in
figure 2.29.

Figure 2.29: Wind Zone: Transform

On the other hand, the Position and Scale values of the Wind Zone are completely
irrelevant as long as we use the Directional Mode of the Wind Zone. The initial pa-
rameters in figure 2.30 are out-of-the-box; we dynamically adapt them in section 3.13 if
the user changes the wind speed. The constant direction of the wind is defined by the
Rotation value of the Wind Zone.

Figure 2.30: Wind Zone: Wind Zone

2.5 Sea

Unity offers a great animated Water Prefab in its Standard Assets package. You
can play around with over 50 parameters (Color, Texture, Reflection, Lighting,
Amplitude, Frequency, Speed, . . .) to adapt the “pounding waves” to your needs.
As indicated in figure 2.31 the coastline between ground and the sea surface is at a
Z-coordinate of 15.

18

Chapter 2. Objects 2.5. Sea

Ground

OrignCenter CenterKite

Sea

0-235-485 51510 265

Figure 2.31: Ground and sea position from above

We want the sea to be a 500 × 500 square – just like the ground. To make it adjacent
to the ground, we have to center it at a Z-position of 265 (figure 2.32) and scale it
accordingly.

Figure 2.32: Sea: Transform

2.5.1 Sea bottom

We want to allow the user to dip the kite into the sea. Therefore, the visible sea surface
does not have a collider. On the other hand, we want to simulate an invisible solid sea
bottom with a 3◦ slope (figure 2.33) that makes the kite partly visible when the user
submerges it into the shallow waters near the coastline.

19

Chapter 2. Objects 2.5. Sea

Figure 2.33: Ground, sea surface, and sea bottom

figure 2.35 shows that the sea bottom is just another 500 × 500 plane with a rotation
about the X-axis of 3◦. Since the rotation is done about the center (pivot point) of the
plane (

[
0 250 250

]
in the local reference frame), we have to calculate the position

of the pivot point using elementary trigonometry6.

Sea surfaceGround

Sea bottom

0
0

250

500

Z

Y

15

a

Figure 2.34: Sea bottom position and rotation looking along the coastline

In figure 2.34 we can see the relation between the sea bottom slope angle α and the
Y-component of the sea bottom’s pivot point:

sinα = Y

250

With a small sea bottom rise angle of α = 3◦, we come up with the resulting Y-
component:

Y = 250 · sin 3◦ = 13.08399
6If we did not exactly calculate the position of the sea ground’s pivot point, the left edges of sea surface
and sea bottom in figure 2.34 would not exactly match leading to unrealistic jumps of the kite when
the user drags the kite across the coastline.

20

Chapter 2. Objects 2.6. Display

For the Z-component we have to take into account that the coastline has a Z-position
of 15:

cosα = Z − 15
250

With α = 3◦ we get:

Z = 250 · cos 3◦ + 15 = 264.6574

Figure 2.35: Sea bottom: Transform

2.6 Display

In order to display information (Wind speed, line length, help, . . .) to the user, we
import a7 Canvas (Hilfe and Leinwand) object from Unity’s GameObject/UI menu
into the scene (figure 2.36).

7Actually, we use two canvases; one for the help and one for the data.

21

Chapter 2. Objects 2.6. Display

Figure 2.36: Display: Data, help, . . .

We change the Render Mode of the Canvas to World Space (figure 2.37), fixing8 the
Canvas at a certain position in space.

Figure 2.37: Display: Canvas

We can then define the canvas’s center position 20 in front of the player, up 5 into the
sky and give it a Width of 20 and a Height of 10 (figure 2.38).

8Basically, this means that we can look away from the canvas. The canvas does not follow our field of
view if we move our head.

22

Chapter 2. Objects 2.6. Display

Figure 2.38: Display: Rect Transform

Values of 1000 for the number of Dynamic Pixels Per Unit and Reference Pixels
Per Unit in the Canvas Scaler (figure 2.39) lead9 to text with a proper size and reso-
lution.

Figure 2.39: Display: Canvas Scaler

2.6.1 Help

For the actual help text we use a Text object from Unity’s GameObject/UI menu as
a child of the canvas. We position the Text in the center of the canvas and give it the
same Width and a Height as the canvas (figure 2.40).

9To be honest, we did not really bother to figure out the exact function of the Canvas Scaler; the
used values simply seem to do the job.

23

Chapter 2. Objects 2.6. Display

Figure 2.40: Help: Rect Transform

In the Text component of the Text object we can directly define the initial text to be
displayed and choose the Font Size, . . . of the text (figure 2.41).

Figure 2.41: Help: Text

We use this feature for the static help text; the data text object on the other hand is
not static but displays the current values of wind speed, line length, . . . during the

24

Chapter 2. Objects 2.7. Start square

simulation. Therefore, we dynamically adapt the text property of the data display in
every simulation step in section 3.2.

2.7 Start square

If the user resets the game, the kite respawns at its initial position (
[

0 0 10
]
in the

global reference frame) and all four lines are reset to a length of 10. If the user has
drastically changed her position before the reset – which is not a problem as long as the
kite is in the air – unwanted rapid movements or falling over of the kite might occur in
the first simulation step after the reset. The start square depicted in figure 2.42 that the
user can see if she looks down can help her to step back to the origin before a reset10.

Figure 2.42: Start square

The start square has a size of 0.5× 0.5 (figure 2.43). We set the Z-position of the start
square center to −0.25. Therefore, if the user stands in the center of the square, her
hands and handles are roughly at the origin of the coordinate system. The Y-position of
the square is slightly positive to avoid z-fighting [7] and to make it visible in the “sand”.

Figure 2.43: Start square: Transform

10Alternatively, we could always reset the kite’s position 10m in front of the player. While that would
avoid the jerky kite jumps after a reset, the user might quickly leave the real-world play area or
orientation after a few resets. And there will be lots of resets . . .

25

Chapter 2. Objects 2.8. Palm trees

The nice Tiffany glass material from Unity’s Standard Assets package in figure 2.44
might occur a bit unexpected on a Caribbean beach, but is too beautiful to not use . . .

Figure 2.44: Start square: GlasRefractive Material

2.8 Palm trees

The palm trees in figure 2.45 are there just to create a little bit of Caribbean atmosphere
in the game. We imported them from the free Coconut Palm Tree Pack in Unity’s
Asset Store. As you can see in figure 2.45 we arbitrarily positioned their lowest point a
few centimeters below the ground to give them a more natural look. You can also see
in figure 2.45 that all palm trees have simple Capsule Colliders that barely cover the
lower parts of the tree trunks. We should therefore not expect a too realistic interaction
of the kite with the trees; you can easily fly the kite through the fronds and the upper
parts of the trunks.

26

Chapter 2. Objects 2.9. Rocks

Figure 2.45: Palm trees

2.9 Rocks

Unlike the palm trees, the rocks (Free_Rocks package) depicted in figure 2.46 use Mesh
Colliders instead of Capsule Colliders allowing the kite to interact with the rocks
quite realistically; we can make the kite touch a rock with its tip, lean it against a rock,
rest it on top of a rock, . . .

27

Chapter 2. Objects 2.10. Lines

Figure 2.46: Rocks

2.10 Lines

As already stated in on page 9, stiff, lightweight lines are extremely difficult to model and
simulate physically. Instead, we use Configurable Joints between kite and handles
and draw “fake” lines with GameObjects from Unity’s Effects/Line menu.

28

Chapter 2. Objects 2.10. Lines

Figure 2.47: Line: Line Renderer

Since we compute and display the lines dynamically with the script in section 3.11,
we can initialize the Positions attribute of the Line Renderer as an empty array in
figure 2.47. We use the same script for all four lines and therefore have to define the
begin (Anfang) and end (Ende) of every line in figure 2.48.

Figure 2.48: Line: Script

29

Chapter 2. Objects 2.11. Sounds

2.11 Sounds

We use three different sound sources for music, ocean waves, and ground collision.

2.11.1 Music

We imported the Sad Piano and Strings soundtrack (figure 2.50) from the Ukrainian
composer and musician Aleksandr Shamaluev who offers fantastic royalty free music
on his website [8]. The music just contributes to the calm, melancholic atmosphere of
the scenery as a background soundtrack. Initially, we position it directly in the head of
the user (figure 2.49).

Figure 2.49: Music: Transform

By using a fast Logarithmic Rolloff (figure 2.50) the user can even use the sound
position and intensity to acoustically find her way back to the origin of the coordinate
system (section 2.7).

30

Chapter 2. Objects 2.11. Sounds

Figure 2.50: Music: Audio Source

2.11.2 Ocean waves

Wikimedia Commons is a great source of sound audio files licensed under the Creative
Commons license. We use a track of “Sound of waves on Nauset Beach after sunset” [9]
to position it at the coastline in front of the player (figure 2.51).

31

Chapter 2. Objects 2.11. Sounds

Figure 2.51: Ocean waves: Transform

Using a slow Linear Rolloff, we give the user an acoustic indication of her head’s orien-
tation11 with respect to the sea.

11If the user yaws her head to the right, she can distinctly hear the ocean waves in her left ear.

32

Chapter 2. Objects 2.11. Sounds

Figure 2.52: Ocean waves: Audio Source

2.11.3 Ground collision

We want the handles to vibrate and some sound to be played if one of the kite’s vertices
hits the ground. For that purpose, we mount four bumpers at the outer vertices of the
kite (figure 2.53). The attached script (section 3.6) plays a sound we took from Unity’s
Standard Assets package at the position of the corresponding bumper and vibrates

33

Chapter 2. Objects 2.12. Target kite

the controllers.

Figure 2.53: Bumper

2.12 Target kite

The target kite is the red transparent kite behind the black user controlled kite in
figure 2.54. It is controlled by the script in section 3.9 and activated by the user. It
performs sinusoidal pitch, yaw, and roll motions that the user can try to follow in the
tutorial.

Figure 2.54: Target kite (red)

As indicated in figure 2.54 and figure 2.55, the pivot point of the target kite is in the
origin at a height of 0.75 which is about the position where the user holds the handles.

34

Chapter 2. Objects 2.12. Target kite

Defining the pivot point in the origin makes it quite easy to have the target kite perform
its motions on a sphere12 around the user; we just have to alter the target kite’s Rotation
angles.

Figure 2.55: Target kite: Transform

2.12.1 Target kite right sail

The right sail of the target kite is a child of the target kite.

Figure 2.56: Target kite right sail

By fixing its Z-position at 10.2 in figure 2.57, we ensure the target kite to move behind
the user controlled kite.

12We keep the line length constant at 10m during the tutorial.

35

Chapter 2. Objects 2.13. Target handles

Figure 2.57: Target kite right sail: Transform

2.13 Target handles

During the tutorial, the target handles act similar to a flight director [10] in an aircraft.
They tell the user the attitude (rotation angles) she should rotate her handles to. As
shown in figure 2.58 and explained in section 2.13.2 we additionally add a target handle
traverse that rotates with the target handles and might make it a bit easier for the user
to detect the actual attitude of the target handles object.

Figure 2.58: Target handles (red)

We fix the Z-position of the target handles at 1m in front of the user, giving her a chance
to always see the target handles, even if she does not see13 her own handles.

Figure 2.59: Target handles: Transform
13New kite pilots tend to hold up the handles in front of them; many experienced pilots keep them at

a more relaxed lower position closer to their hips.

36

Chapter 2. Objects 2.13. Target handles

2.13.1 Right target handle

The right target handle (figure 2.60) has the same Position and Scale (figure 2.61) with
respect to its parent as the actual handle (figure 2.17).

Figure 2.60: Right target handle

Figure 2.61: Right target handle: Transform

2.13.2 Target handle traverse

The target handle traverse (figure 2.62) is another child of the target handles object.

37

Chapter 2. Objects 2.14. Entitlement and Focus Check

Figure 2.62: Target handle traverse

It is just a cuboid at the pivot point (Position in figure 2.63) of the target handles
object with an X-length14 of nearly 0.5.

Figure 2.63: Target handle traverse: Transform

2.14 Entitlement and Focus Check

In order to offer it in their store, Oculus requires an app to pass a bunch of Virtual
Reality Checks. Most of the checks are automatically passed since we create RevSim
14We have to subtract the thickness of a handle from the traverse’s X-length to prevent the traverse to

penetrate the handles. Such a penetration would not be visible with opaque handles, but since we
have transparent target handles . . .

38

Chapter 2. Objects 2.14. Entitlement and Focus Check

with Unity; for two tests – the Entitlement Check and the Focus Check – we have to
write15 two small scripts (section 3.4 and section 3.5) to ensure, that the user is allowed
to use the app and that the app stops writing frames if the user presses the Oculus
Home button or quits the application. In order to run the scripts immediately at the
start of the app, we create an invisible Entitlement and Focus Check object in the
scene and add both scripts (section 3.4) to the object.

15To be honest, we found some useful code snippets in the Oculus documentation and adapted them
to our needs.

39

3 Functions

In this chapter, we discuss every function we used in Unity in detail.

3.1 Aerodynamics

In the Aerodynamik class we compute the aerodynamic forces generated by the relative
velocity of the kite with respect to the air. We add the script to both sails of the kite
allowing each sail to independently compute its own forces.
Unity scripts automatically import some standard types from predefined namespaces:
using System . Collections ;
using System . Collections . Generic ;
using UnityEngine ;

Every Unity script derives from the MonoBehaviour base class:
public class Aerodynamik : MonoBehaviour
{

Before we define the Start function, we declare some (global) objects. We will use the
player GameObject spieler to access the wind speed the user defines with her right
controller:
GameObject spieler ;

We will use Rigidbody festkoerper to read the current drag, angular drag, and velocity
properties of each sail
private Rigidbody festkoerper ;

and
private Transform zustand ;

for the current attitude of the sail. The joint attributes
private ConfigurableJoint [] feder;
private SoftJointLimit linear_limit ;

are necessary to come up with the current line length and

40

Chapter 3. Functions 3.1. Aerodynamics

public Vector3 V_W;
public Vector3 V_K;
public Vector3 V_A;

stand for
V_W Wind speed vector (velocity of the air with respect to the ground)
V_K Ground speed vector (velocity of the sail with respect to the ground)
V_A Air speed vector (velocity of the sail with respect to the air)
The start function is called before the first simulation step:
void Start ()
{

In the function, we address the player object in the scene (section 2.3)
spieler = GameObject .Find(" Spieler ");

the array of the configurable joints (figure 2.10)
feder = GetComponents < ConfigurableJoint >();

and the Rigidbody component of the sail (section 2.2.1):
festkoerper = GetComponent <Rigidbody >();

We initialize the wind speed vector
V_W = new Vector3 (0, 0, 10);

and finally reference the state (Position, Rotation, and Scale) of the sail:
zustand = transform ;
}

For physical simulations we utilize the FixedUpdate function:
void FixedUpdate ()
{

It is called at a predefined constant rate independent of the variable graphical frame
rate. In every simulation step, we acquire (section 3.3) the current line length the user
defines via her right controller
float seillaenge =
spieler . GetComponent < Controllereingaben >(). seillaenge ;

and start a loop over both lines connected to the sail:
for (int i = 0; i < 2; i++)
{

41

Chapter 3. Functions 3.1. Aerodynamics

The next three1 lines of code adapt the LinearLimit property of the ConfigurableJoint
representing the line to the current line length.2 We buffer the current LinearLimit of
the joint into the predeclared SoftJointLimit

linear_limit = feder[i]. linearLimit ;

copy the current line length into the Limit property of the SoftJointLimit

linear_limit .limit = seillaenge ;

and write back the SoftJointLimit into the LinearLimit property of the joint:
feder[i]. linearLimit = linear_limit ;

}

The user can customize the air drag with her right controller. For the sake of simplic-
ity, we use the same value for the translational (linear) and rotational (angular) drag
coefficients. We read the current user defined drag value
float daempfung =
spieler . GetComponent < Controllereingaben >(). daempfung ;

and copy it into the linear
festkoerper .drag = daempfung ;

and angular drag property of the sail:
festkoerper . angularDrag = daempfung ;

The next few lines compute the force vector that is exerted on the kite by the air speed
of the sail.
The wind speed (velocity of the air with respect to the ground) can be modified by the
user too. We assume the wind always3 blowing into the global Z-direction (from land
to sea). Therefore, we must copy the scalar wind speed into the Z-component of the
three-dimensional wind speed vector V_W only:
V_W [2] =
spieler . GetComponent < Controllereingaben >(). windgeschwindigkeit ;

Unity kindly provides us with the velocity vector of every Rigidbody with respect to
the ground. Therefore, we can directly determine the ground speed (of each sail) as a
vector:
V_K = festkoerper . velocity ;

1This lengthy way to alter the joint’s LinearLimit seems to be quite awkward; nevertheless, we could
not find a working shortcut. Any ideas?

2To be honest, this line length adaptation does not really have to do too much with the computation
of aerodynamic forces. We should outsource it into a different script; but since we are a bit lazy ...

3It would not a big deal to introduce different wind directions or even turbulence here; we just figured
out it would not add too much more fun to the overall flying experience.

42

Chapter 3. Functions 3.1. Aerodynamics

figure 3.1 explains that there is a vectorial relation between
VW Velocity of the air with respect to the ground
VK Velocity of a flying object with respect to the ground
VA Velocity of the object with respect to the air

VW

VA VK

Figure 3.1: Relation between wind speed VW , ground speed VK , and air speed VA [11]

Thanks to Unity’s great vectorial capabilities we can directly express the relation be-
tween the speed vectors

VK = VA + VW

or

VA = VK − VW (3.1)

in code:
V_A = V_K - V_W;

43

Chapter 3. Functions 3.1. Aerodynamics

The air speed V_A is responsible for the aerodynamic force4 on the sail.5

We assume the aerodynamic force vector RA to act perpendicular to the sail (figure 3.2)
which is not exactly true but produces quite realistic results. The forward property of
a three-dimensional vector is Unity’s shorthand notation for writing Vector3(0, 0,
1), which returns a unit vector pointing into the Z-direction of the local sail coordinate
system. Therefore,
Vector3 normalenvektor = zustand . forward ;

provides us with a unit normal vector n perpendicular on the sail (figure 3.2).

Kite

e

L

a

a

_
a

-VA

-VA

RA

n

Figure 3.2: Effective area e

The dot product s of the negative air speed vector −VA and the unit6 normal vector n
float s = Vector3 .Dot(-V_A , normalenvektor);

becomes proportional to the magnitude (norm) VA of the airspeed vector and to the
sine7 of the angle of attack α:

s = −VA · n
= VA · n · cos ᾱ
= VA · cos ᾱ

= VA · cos
(
π

2 − α
)

= VA · sinα (3.2)
4There is lift if the wind blows but the kite does not move; but there is also lift if we drag the kite in
calm air (e. g. indoors). It is the relative speed between the kite and the air that produces the lift.

5It seems to be a bit contra-intuitive to define the air speed VA pointing away from the kite into
the direction of the incoming air flow (note that we use −VA in figure 3.2). This definition is very
useful in flight mechanics of aircraft because according to equation (3.1) the direction of the air speed
vectorVA is equal to the direction of the ground speed vector VK if there is no wind (VW = 0). For
a kite however, one might be tempted to define VA = VW −VK , because with a kite, the air speed
VA is usually produced by wind (VW) and not by motion of the kite (VK). Nevertheless, for the
sake of continuity, we stick to the well established definition according to equation (3.1).

6Keep in mind the trivial fact that the norm of a unit vector equals 1: |n| = n = 1
7Seen from another physical angle in figure 3.2, sinα in equation (3.2) assumes that the aerodynamic
force depends on the area e that defines how much of the sail area is effected by the inflow.

44

Chapter 3. Functions 3.1. Aerodynamics

Physics tells us that the dynamic pressure q̄ does not linearly dependent on the airspeed
but is proportional to the square of the airspeed (and the air density ρ)

q̄ = ρ

2V
2

A (3.3)

while the aerodynamic force RA depends on the surface area S, the dynamic pressure q̄,
and the drag (or lift, respectively) coefficient C:

RA = S · q̄ · C (3.4)

Using equation (3.2) and equation (3.3) in equation (3.4) we come up with:

RA = 0.1 · VA · s
= 0.1 · V 2

A · sinα

float R = 0.1f * V_A. magnitude * s;

where the empirical factor of 0.1 represents the influences of surface area and drag
coefficient.
We can then use RA as the magnitude of the aerodynamic force vector RA

RA = n ·RA

and finally make RA the force vector acting on the sail:

festkoerper . AddForce (normalenvektor * R);
}
}

Please note that we model the aerodynamics in a very rudimentary way; nevertheless,
the kite behaves quite realistically: The lift force L compensating the weight of the kite
is the vertical component of the aerodynamic force vector RA in figure 3.2

L = RA · cosα

making the lift proportional to

L ∼ sinα cosα

45

Chapter 3. Functions 3.1. Aerodynamics

The corresponding graph is depicted in figure 3.3.

0 10 20 30 40 50 60 70 80 90
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

L

1

2

3

4

5

 L sin cos

Figure 3.3: Lift L over angle of attack α

1. If the kite is vertically standing on the ground, its angle of attack is 90◦ and
figure 3.3 returns a lift force of zero. This is physically correct: The aerodynamic
force vector RA in figure 3.2 is horizontal, creating maximum drag that pulls the
kite away from the pilot but no lift that could compensate the weight of the kite.

2. If the pilot decreases the angle of attack by rotating the kite’s trailing edge closer
to herself, we move backwards on the graph in figure 3.3. The aerodynamic force
vector rotates up, the lift increases until it equals the weight of the kite, and the
kite leaves the ground for the first time.

3. If the angle of attack reaches 45◦, the lift is it at its maximum; the kite reaches its
maximum height.

4. If the pilot decreases the angle of attack any further, the lift decreases too and the
kite loses height. The aerodynamic force vector points upwards more and more,
but the effective sail area becomes smaller and smaller.

5. If the pilot has decreased the angle of attack to zero, the kite floats horizontally in
the air. Theoretically, the aerodynamic force vector is now perfectly vertical but
its magnitude is zero because the horizontal sail cannot produce any lift.8

8You can actually fly this maneuver in RevSim. If you rapidly rotate (the upper ends of) both handles
towards you, the kite starts floating towards the ground and the lines pile up on the ground. Maybe,

46

Chapter 3. Functions 3.2. Data display

3.2 Data display

We use the Anzeige class to dynamically display the current wind speed, line length,
and drag on the Text (Anzeige) object which is a child of the Canvas (Leinwand) object
described in section 2.6.
Additionally to the standard types (section 3.1) we import the UnityEngine.UI type:
using System . Collections ;
using System . Collections . Generic ;
using UnityEngine ;
using UnityEngine .UI;

In the class
public class Anzeige : MonoBehaviour
{

we declare the Text component of the Text object
Text anzeige_text ;

and the GameObject spieler to access the current wind speed, line length, and drag
the user defines with her controllers:
GameObject spieler ;

During the initialization
void Start ()
{

we address the Text component of the Text object
anzeige_text = GetComponent <Text >();

and the player object in the scene (section 2.3):
spieler = GameObject .Find(" Spieler ");
}

In every (graphical) simulation step
void Update ()
{

we read the wind speed (windgeschwindigkeit), line length (seillaenge), and drag
(daempfung) properties from the Controller input (Controllereingaben) component
of the player (spieler) object and display the data in the text property of the Text
component of the Text object:

one of the next RevSim versions might even offer you the ability to catch the floating kite with your
hands . . .

47

Chapter 3. Functions 3.3. Controller input

anzeige_text .text =
"Press left controller button Y for help." +
"\n" +
"\n" +
"Wind: " +
spieler . GetComponent < Controllereingaben >().
windgeschwindigkeit . ToString ("F1") +
" m/s" +
"\n" +
"Line: " +
spieler . GetComponent < Controllereingaben >().
seillaenge . ToString ("F1") +
" m" +
"\n" +
"Drag: " +
spieler . GetComponent < Controllereingaben >().
daempfung . ToString ("F1") +
" m";
}
}

3.3 Controller input

In the class Controllereingaben

using System . Collections ;
using System . Collections . Generic ;
using UnityEngine ;

public class Controllereingaben : MonoBehaviour
{

we use the inputs the user has made with her controllers to modify the corresponding
game parameters (line length, wind speed, . . .).
We declare the relevant parameters
public float seillaenge ;
public float windgeschwindigkeit ;
public float daempfung ;
public float t_start ;
public int solldrachen_zustand ;
public int anzeige_zustand ;

and the objects to be addressed and modified

48

Chapter 3. Functions 3.3. Controller input

GameObject segel_rechts ;
GameObject segel_links ;
GameObject solldrachen ;
GameObject sollhandles ;
GameObject anzeige ;
GameObject hilfetext ;
GameObject musik;
GameObject meeresrauschen ;
GameObject seile;
GameObject hilfe_rechts ;
GameObject hilfe_links ;

and use the initialization function to find the objects
void Start ()
{
segel_rechts = GameObject .Find("Segel rechts ");
segel_links = GameObject .Find("Segel links");
solldrachen = GameObject .Find(" Solldrachen ");
sollhandles = GameObject .Find(" Sollhandles ");
anzeige = GameObject .Find(" Anzeige ");
hilfetext = GameObject .Find(" Hilfetext ");
musik = GameObject .Find("Musik");
meeresrauschen = GameObject .Find(" Meeresrauschen ");
seile = GameObject .Find("Seile");
hilfe_rechts = GameObject .Find("Hilfe rechts ");
hilfe_links = GameObject .Find("Hilfe links");

and initialize the parameters
seillaenge = 10f;
windgeschwindigkeit = 10f;
daempfung = 1f;
t_start = 0f;
solldrachen_zustand = 0;
solldrachen . SetActive (false);
sollhandles . SetActive (false);
hilfetext . SetActive (false);
musik. SetActive (true);
anzeige_zustand = 0;
}

In every simulation step
void Update ()
{

we modify the parameters according to the controller inputs. As long as the user pushes

49

Chapter 3. Functions 3.3. Controller input

the left thumbstick forward, the line length (seillaenge) is increased9 with a maximum
of 10 cm per simulation step:
seillaenge +=
0.1f * OVRInput .Get(OVRInput . Axis2D . PrimaryThumbstick)[1];

While we do not limit10 the maximum line length, we do not allow line lengths less than
50 cm:
if (seillaenge < 0.5f)
{

seillaenge = 0.5f;
}

Pushing the right thumbstick forward increases the wind speed (windgeschwindigkeit)
windgeschwindigkeit +=
0.1f * OVRInput .Get(OVRInput . Axis2D . SecondaryThumbstick)[1];

and pushing the right thumbstick to the right increases the drag (daempfung):
daempfung +=
0.1f * OVRInput .Get(OVRInput . Axis2D . SecondaryThumbstick)[0];

Negative drag would generate an unrealistic force acting into the direction of the current
velocity vector; we limit the minimum drag to zero:
if (daempfung < 0.0f)
{

daempfung = 0.0f;
}

Pressing the A button on the right controller (figure 2.19) resets (section 3.3.1) the
attitude and the position of the kite using the current11 line length:
if (OVRInput .Get(
OVRInput . Button .One , OVRInput . Controller . RTouch))
{

Reset ();
}

The B button on the right controller (figure 2.19) hard resets the whole simulation to its
initial state. Additionally to the grounding and attitude reset of the kite in section 3.3.1,
we also reset the line length, the wind speed, the drag, and the state12 of the target kite

9Assuming a graphical sampling rate of 90Hz, you can increase the line length up to 9 meters per
second. Obviously, pulling the thumbstick backwards pulls the kite back towards to you.

10There is always a natural resolution limit: If the graphic representation of the distant kite falls short
of two pixel you can no more recognize the kite’s bank angle making it harder and harder to control
its attitude and position.

11Think of this as a soft reset if you momentarily lost control of the kite. Your currently chosen line
length, wind speed, and drag are kept untouched but the kite is reset to the ground with an upright
attitude.

12You can always terminate the tutorial by pressing the B button.

50

Chapter 3. Functions 3.3. Controller input

(solldrachen_zustand):
if (OVRInput .Get(
OVRInput . Button .Two , OVRInput . Controller . RTouch))
{

seillaenge = 10;
windgeschwindigkeit = 10;
daempfung = 1;
solldrachen_zustand = 0;

Reset ();
}

The X button on the left controller (figure 2.19) cycles through the steps of the tutorial.
Whenever the button is pressed
if (OVRInput . GetDown (
OVRInput . Button .One , OVRInput . Controller . LTouch))
{

we buffer the current simulation time offset in order to start every tutorial step with an
initial time of zero in section 3.9

t_start = Time.time;

and increment the state of the target kite:
solldrachen_zustand += 1;

Since we have four tutorial steps, the fifth press of the Y button cycles back out of the
tutorial:

solldrachen_zustand %= 5;

Every X button press also hard resets13 the line length, the wind speed, the drag, and
the kite:

seillaenge = 10;
windgeschwindigkeit = 10;
daempfung = 1;

Reset ();
}

If we are not doing the tutorial, we do neither want to see the target kite (solldrachen)
nor the target handles (sollhandles):
if (solldrachen_zustand == 0)
{

13Yes, we should write an extra hard reset function, but well . . .

51

Chapter 3. Functions 3.3. Controller input

solldrachen . SetActive (false);
sollhandles . SetActive (false);

}

If we are in the tutorial, we make the target kite and the target handles visible and keep
the line length, the wind speed, and the drag14 constant:
else
{

solldrachen . SetActive (true);
sollhandles . SetActive (true);

seillaenge = 10;
windgeschwindigkeit = 10;
daempfung = 10;

}

We use the keyboard15 keys to toggle sound and object visibility: If the user presses the
“1” key, we toggle the audibility of the music (musik) and the ocean waves (meeresrauschen):
if (Input. GetKeyDown (KeyCode . Alpha1))
{

if (musik. activeSelf)
{

musik. SetActive (false);
meeresrauschen . SetActive (false);

}
else
{

musik. SetActive (true);
meeresrauschen . SetActive (true);

}
}

Pressing the “2” key, toggles the visibility of the lines (seile)
if (Input. GetKeyDown (KeyCode . Alpha2))
{

if (seile. activeSelf)
{

seile. SetActive (false);
}
else
{

14Using a constant drag of 10 during the tutorial instead of the default value of 1, helps the inexperienced
pilot a lot: The kite moves in slow motion as if the air has become smooth liquid honey.

15Yes, we should not use the keyboard in VR applications. And yes, we should save the users choice
and respect her will the next time she plays RevSim . . .

52

Chapter 3. Functions 3.3. Controller input

seile. SetActive (true);
}

}

and the “3” key toggles the visibility of the right (hilfe_rechts) and the left (hilfe_links)
help plates (figure 2.19):
if (Input. GetKeyDown (KeyCode . Alpha3))
{

if (hilfe_rechts . activeSelf)
{

hilfe_rechts . SetActive (false);
hilfe_links . SetActive (false);

}
else
{

hilfe_rechts . SetActive (true);
hilfe_links . SetActive (true);

}
}

Every Y button press on the left controller (figure 2.19)
if (OVRInput . GetDown (
OVRInput . Button .Two , OVRInput . Controller . LTouch))
{

cycles through three different display (section 2.6) states (anzeige_zustand)
• Display of dynamic data
• Static help display
• No display

anzeige_zustand += 1;
anzeige_zustand %= 3;

Depending on the display state
switch (anzeige_zustand)
{

we display dynamic data (line length, wind speed, and drag)
case 0:

anzeige . SetActive (true);
hilfetext . SetActive (false);
break;

the static help

53

Chapter 3. Functions 3.3. Controller input

case 1:
anzeige . SetActive (false);
hilfetext . SetActive (true);
break;

or nothing at all:
case 2:

anzeige . SetActive (false);
hilfetext . SetActive (false);
break;

default :
break;

}
}
}

3.3.1 Reset

The (soft) Reset function of the controller input class
void Reset ()
{

is called, whenever the user presses the A button on the right controller. It resets the
right sail (segel_rechts) to its initial position using the current line length (seillaenge)
segel_rechts . transform . position =
new Vector3 (0.5f, 0, seillaenge);

and resets all Euler angles (pitch angle, yaw angle, and bank angle) of the right sail to
zero:
segel_rechts . transform . rotation = Quaternion .Euler (0, 0, 0);

Obviously, the same reset has to be done for the left sail (segel_links) :
segel_links . transform . position =
new Vector3 (-0.5f, 0, seillaenge);

segel_links . transform . rotation = Quaternion . Euler (0, 0, 0);

Finally, we provide the user with a light (0.1f) haptic right controller vibration feedback
by calling the corresponding coroutine (section 3.3.2):
StartCoroutine (Vibriere (0.1f));
}

54

Chapter 3. Functions 3.4. Entitlement check

3.3.2 Right controller vibrate

The right controller vibration (Vibriere) coroutine is called with the required vibration
strength (staerke)
IEnumerator Vibriere (float staerke)
{

and uses the parameter to switch on the vibration of the right controller with maximum
frequency (1f) and the required strength:
OVRInput . SetControllerVibration (
1f, staerke , OVRInput . Controller . RTouch);

We want the vibration to last 100ms
yield return new WaitForSeconds (0.1f);

and then switch it off again:
OVRInput . SetControllerVibration (
0f, 0f, OVRInput . Controller . RTouch);
}
}

3.4 Entitlement check

The EntitlementCheck class
using System . Collections ;
using System . Collections . Generic ;
using UnityEngine ;
using Oculus . Platform ;

public class EntitlementCheck : MonoBehaviour
{

ensures, that the user is allowed to use the app (section 2.14).
The awake function of a game object is called as soon as the object has been initialized
by Unity.
void Awake ()
{

The recommended way to perform the entitlement check is to wrap it in a try catch
block
try
{

55

Chapter 3. Functions 3.4. Entitlement check

initialize the platform SDK
Core. AsyncInitialize ();

perform the entitlement check, and call a function if the check is complete:
Entitlements . IsUserEntitledToApplication ().
OnComplete (EntitlementCallback);

}

If the platform SDK initialization was not successful
catch (UnityException e)
{

we inform the user16

Debug. LogError (
" Platform failed to initialize due to exception .");

Debug. LogException (e);

and quit the application immediately:
UnityEngine . Application .Quit ();

}
}

If the check is complete, the corresponding function is called:
void EntitlementCallback (Message msg)
{

If the check was not successful
if (msg. IsError)
{

we inform the user and quit the application
Debug. LogError ("You are NOT entitled to use this app.");

UnityEngine . Application .Quit ();
}

If the check was successful, we inform the user and the application can proceed:
else
{

Debug.Log("You are entitled to use this app.");
}
}
}

16Obviously, debug outputs are only useful during the development phase.

56

Chapter 3. Functions 3.5. Focus Check

3.5 Focus Check

The FocusCheck class
using System . Collections ;
using System . Collections . Generic ;
using UnityEngine ;
using UnityEngine .XR;

public class FocusCheck : MonoBehaviour
{

ensures, that the app stops writing frames if the user presses the oculus Home button or
quits the application.We declare the main camera (hauptkamera) object and its camera
component (kamera)
GameObject hauptkamera ;

private Camera kamera ;

and access the object and the component in the initialization function:
void Start ()
{
hauptkamera = GameObject .Find(" Hauptkamera ");

kamera = hauptkamera . GetComponent <Camera >();

In Unity we add an event handler (i. e. the function called when the event is raised) by
using the overloaded assignment operator. We add handlers for four events:
InputFocusLost The input focus is lost because the game pauses because the

user pressed the oculus Home button.
InputFocusAcquired The input focus is regained because the game resumes because

the user returned from oculus Home.
VrFocusLost The VR focus is lost because the user set the headset down.
VrFocusAcquired The VR focus is regained because the user put the headset

back on again.

OVRManager . InputFocusLost += GamePause ;
OVRManager . InputFocusAcquired += GameResume ;
OVRManager . VrFocusLost += VRFocusLost ;
OVRManager . VrFocusAcquired += VRFocusFound ;
}

57

Chapter 3. Functions 3.5. Focus Check

3.5.1 Game pause

If the game is paused
void GamePause ()
{

we turn off the sounds
AudioListener .pause = true;

and stop the simulation:
Time. timeScale = 0.0f;
}

3.5.2 Game resume

If the game is resumed
void GameResume ()
{

we switch the sounds back on again
AudioListener .pause = false;

and resume the simulation
Time. timeScale = 1.0f;

3.5.3 VRFocusLost

If the user sets the headset down
void VRFocusLost ()
{

we pause the sounds and stop the simulation:
AudioListener .pause = true;
Time. timeScale = 0.0f;

Additionally, we stop rendering to the headset
kamera . stereoTargetEye = StereoTargetEyeMask .None;

and disable positional tracking of the headset:
UnityEngine .XR. InputTracking . disablePositionalTracking = true;
}

58

Chapter 3. Functions 3.6. Ground collision

3.5.4 VRFocusFound

If the user puts the headset back on again
void VRFocusFound ()
{

we restart sounds, simulation, and rendering and reenable the headset tracking
AudioListener .pause = false;
Time. timeScale = 1.0f;
kamera . stereoTargetEye = StereoTargetEyeMask .Both;
UnityEngine .XR. InputTracking . disablePositionalTracking = false;
}
}

3.6 Ground collision

We want the controllers to vibrate and the kite to make some noise if it hits the ground
(section 2.11.3). In the Explosion class
using System . Collections ;
using System . Collections . Generic ;
using UnityEngine ;

public class Explosion : MonoBehaviour
{

we declare the audio source (quelle) component we attached to every ground contact
sensor object
public AudioSource quelle ;

and the sail (segel)
Rigidbody Segel;

During the initialization
void Start ()
{

we access the sound component
quelle = GetComponent < AudioSource >();

and the sail as the parent of the sensor object:
Segel = gameObject . GetComponentInParent <Rigidbody >();
}

59

Chapter 3. Functions 3.6. Ground collision

In every simulation step
void Update ()
{

we check if the kite touches17 the ground with one of its sensors
if (transform . position [1] < 0.01)
{

and vibrate both controllers. The strength of the vibration is proportional to the ground
impact velocity18:

StartCoroutine (Vibriere (-Segel. velocity [1] / 50));
}

Three conditions
1. The previous sound has finished.
2. The kite is close enough to the ground.
3. The ground impact velocity19 is greater than 3m

s .

if (
! quelle . isPlaying &&
transform . position [1] < 0.01 &&
Segel. velocity [1] < -3
)

{

have to be met for the ground collision sound to be played:
quelle .Play ();

}
}

3.6.1 Both controllers vibrate

The coroutine to vibrate both controllers is identical to the one described in section 3.3.2,
except for the fact that now the left controller vibrates too:
IEnumerator Vibriere (float staerke)
{
OVRInput . SetControllerVibration (

17Due to numerical issues, we have to detect “ground collision” even if the contact sensor is a few
millimeters above the ground. Users do not recognize the difference.

18The maximum vibration strength is reached at a devastating crash speed of 50 m
s .

19Yes, we could make the sound volume proportional to the crash speed . . .

60

Chapter 3. Functions 3.7. Left handle

1f, staerke , OVRInput . Controller . RTouch);

OVRInput . SetControllerVibration (
1f, staerke , OVRInput . Controller . LTouch);

yield return new WaitForSeconds (0.1f);

OVRInput . SetControllerVibration (
0f, 0f, OVRInput . Controller . RTouch);

OVRInput . SetControllerVibration (
0f, 0f, OVRInput . Controller . LTouch);
}
}

3.7 Left handle

The Handle_links class
using System . Collections ;
using System . Collections . Generic ;
using UnityEngine ;

public class Handle_links : MonoBehaviour
{

is attached to the left handle and transfers the motion of the real world left controller
to the left handle in virtual reality. In every fixed rate simulation step
void FixedUpdate ()
{

we read the position of the left controller and copy it to the position of the left handle:
transform . localPosition =
OVRInput . GetLocalControllerPosition (
OVRInput . Controller . LTouch);

Just like that we copy the attitude of the left controller to the attitude of the left handle
transform . localRotation =
OVRInput . GetLocalControllerRotation (
OVRInput . Controller . LTouch);
}
}

61

Chapter 3. Functions 3.8. Right handle

3.8 Right handle

Obviously, we have to copy the position and attitude of the right controller to the
corresponding properties of the right handle:
using System . Collections ;
using System . Collections . Generic ;
using UnityEngine ;
using UnityEngine . SceneManagement ;

public class Handle_rechts : MonoBehaviour
{
void FixedUpdate ()
{
transform . localPosition =
OVRInput . GetLocalControllerPosition (
OVRInput . Controller . RTouch);

transform . localRotation =
OVRInput . GetLocalControllerRotation (
OVRInput . Controller . RTouch);
}
}

3.9 Setpoint generator

In the tutorial, we use the setpoint generator (Sollwertgenerator) class
using System . Collections ;
using System . Collections . Generic ;
using UnityEngine ;

public class Sollwertgenerator : MonoBehaviour
{

to generate setpoint sequences for elevation, azimuth, and roll angles for the target kite
(section 2.12). We declare the player (spieler) object and the setpoint angles
GameObject spieler ;

public float elevation ;
public float azimut ;
public float rollwinkel ;

and access the player during the initialization:

62

Chapter 3. Functions 3.9. Setpoint generator

void Start ()
{
spieler = GameObject .Find(" Spieler ");
}

In every simulation step
void FixedUpdate ()
{

we read the simulation time offset t_start

float t_start =
spieler . GetComponent < Controllereingaben >(). t_start ;

we buffer in section 3.3 whenever the user starts a new tutorial step by pressing the X but-
ton. Additionally, we read the current state of the target kite (solldrachen_zustand)
indicating the current tutorial step:
int solldrachen_zustand =
spieler . GetComponent < Controllereingaben >(). solldrachen_zustand ;

In order to start every tutorial step with an initial time of zero, we subtract the tutorial
step time offset from the current time:
float t = Time.time - t_start ;

We chose the maximum setpoint elevation angle ε (in degrees)
float elevation_max = 2.8114 f;

according to figure 3.4.

e

y

kite
10.2

0
.2
5

0.75

x

Figure 3.4: Maximum setpoint elevation angle ε

In the elevation tutorial, the target kite starts 75 cm above the ground (figure 3.4) and

63

Chapter 3. Functions 3.9. Setpoint generator

reaches its maximum20 elevation angle when the kite touches the ground with its lower21

vertices. In order to compute the maximum elevation angle, we can22 find three equations
for the three unknowns x, y, and ε in figure 3.4. The first equation describes the trivial
fact that x and y add up to 75 cm:

x+ y = 0.75

The second equation can be found in the rectangular triangle involving y, the virtual
line length of the target kite (10.2), and ε:

sin ε = y

10.2

For the last equation, we use x, half the kite’s height (0.25), and ε in the small lower
triangle:

cos ε = x

0.25
We use Matlab’s Symbolic Math Toolbox to declare the unknowns
syms x y epsilon

express the equations
g_1 = x + y == 0.75;
g_2 = sin (epsilon) == y / 10.2;
g_3 = cos (epsilon) == x / 0.25;

and solve the equation system for the maximum elevation angle
erg = solve (g_1 , g_2 , g_3);
erg. epsilon −2 atan

(√
10354
10 − 51

5

)
2 atan

(√
10354
10 + 51

5

)
which corresponds to a floating point value of:
rad2deg (double (erg. epsilon))

ans =

2.8114
174.3805

20The left-hand rotation rule says: If you point your left thumb into the positive direction of the X-axis
(i. e. the red vector to your right in figure 2.2) your bended fingers indicate the positive direction of
rotation, which is down.

21We happily neglect the fact that the kite has a tiny thickness and therefore touches the ground with
its lower back vertices first.

22Alternatively, we could assume that ε is very small, that the kite touches the ground approximately
vertically and therefore, that y ≈ 0.5. The approximate maximum elevation angle would then be
ε ≈ arcsin 0.5

10.2 = 2.8097.

64

Chapter 3. Functions 3.9. Setpoint generator

Depending on the current tutorial (solldrachen_zustand)
switch (solldrachen_zustand)
{

we compute sinusoidal sequences for the corresponding setpoint angles.
If the user has chosen the elevation tutorial
case 1:

we compute the current elevation angle23 setpoint:
elevation = elevation_max * (Mathf.Cos (1f * t));

and imprint it on the target kite:
transform . rotation =
Quaternion .Euler(new Vector3 (elevation , 0, 0));

break;

In case of the azimuth tutorial
case 2:

we start at a height of 75 cm above the ground, slowly24 move the kite 5° to the right,
then 5° to the left, and so on:

azimut = 5f * (Mathf.Sin (0.5f * t));

transform . rotation =
Quaternion .Euler(new Vector3 (0, azimut , 0));

break;

We offer two roll tutorials. In the first (small) roll tutorial
case 3:

we let the target kite roll ±20° starting at its standard position 75 cm above the ground
with a period of T ≈ 6 sec:

rollwinkel = 20f * (Mathf.Sin (1f * t));

transform . rotation =
Quaternion .Euler(new Vector3 (0, 0, rollwinkel));

break;

23Note that – because of the cosine and the left-hand rule – the up and down motion of the target kite
starts at t = 0 on the ground (ε = εmax).

24The angular frequency ω = 0.5 corresponds to a period of T = 2π
ω = 4π sec ≈ 13 sec.

65

Chapter 3. Functions 3.10. Controller

In the second (large) roll tutorial
case 4:

we need more space beneath the kite for a roll angle of 70°. Therefore, we lift the kite
2° up25

elevation = -2;

and very slowly (T ≈ 21 sec) roll the target kite ±70°:
rollwinkel = 70f * (Mathf.Sin (0.3f * t));

transform . rotation =
Quaternion .Euler(new Vector3 (elevation , 0, rollwinkel));

break;

default :

break;
}
}
}

3.10 Controller

The Regler class
using System . Collections ;
using System . Collections . Generic ;
using UnityEngine ;

public class Regler : MonoBehaviour
{

could be attached to the handles and used as a closed-loop controller to make the kite
follow external commands. Alternatively, it can be attached to the target handles open-
loop style in order to act as a flight director [10]. In RevSim’s tutorial we want the user
to control the kite with her hands. Therefore, we do not activate the Regler class on
the handles but only on the target handles.
The block diagram in figure 3.5 displays a standard feedback control loop in which the
state of the kite is “measured” and compared to the setpoint26 resulting in an error if
25Remember, the kite has a span of 2m; the standard 75 cm about the ground might now become a

little tight. 10.2 · sin 2◦ ≈ 0.36 gives us the necessary additional ground clearance.
26During the tutorial, the setpoint is generated in the setpoint generator class in section 3.9 and used

to position the target kite directly (figure 3.5).

66

Chapter 3. Functions 3.10. Controller

both values are not identical. The error is then fed into the feedback controller that
– in an automatic control application – would use the handles to make the kite follow
the target kite (dotted line in figure 3.5). In RevSim, we use the signal for the target
handles (flight director) showing the user how to rotate her own handles if she wanted
the kite to follow the target kite.

-
Feedback

Feedforward

Kite

Flight director

Target kite

Handles

Target
handles

Setpoint Error

Figure 3.5: Control block diagram

Additionally to the classic feedback loop, we use a feedforward controller (figure 3.5)
that computes an additional handle signal directly from the setpoint. For example, we
know we have to pitch both handles simultaneously if we want the kite to lift off. We
know from experience that we need a pitch offset of about 12° to compensate the weight
of the kite by the aerodynamic lift force. We also know that – as long as the kite is not
too high above the ground – its elevation angle is linearly depending on the handle pitch
angle. Therefore, the feedforward controller in figure 3.5 could look like figure 3.6.

P Controller

Offset (12°)

Setpoint Handles

Feedforward Controller

Figure 3.6: Elevation (pitch) feedforward controller

In the class, we define a few objects
GameObject solldrachen ;

67

Chapter 3. Functions 3.10. Controller

GameObject segel_rechts ;
GameObject segel_links ;
GameObject segel_dreh ;
GameObject spieler ;
GameObject handle_rechts ;
GameObject handle_links ;

variables, and controller parameters:
public float drachen_x ;
public float drachen_y ;
public float drachen_z ;

public float elevation_soll ;
public float elevation_ist ;
public float elevation_regelfehler ;
public float elevation_vorsteuerung_verstaerkung ;
public float elevation_vorsteuerung_offset ;
public float elevation_regler_verstaerkung ;
public float elevation_stellgroesse ;

public float rollwinkel_soll ;
public float rollwinkel_ist ;
public float rollwinkel_regelfehler ;
public float rollwinkel_vorsteuerung_verstaerkung ;
public float rollwinkel_regler_verstaerkung ;
public float rollwinkel_stellgroesse ;

public float azimut_soll ;
public float azimut_ist ;
public float azimut_regelfehler ;
public float azimut_vorsteuerung_verstaerkung ;
public float azimut_regler_verstaerkung ;
public float azimut_stellgroesse ;

public float handle_rollen ;

In the initialization function
void Start ()
{

we access the objects
solldrachen = GameObject .Find(" Solldrachen ");
segel_rechts = GameObject .Find("Segel rechts ");
segel_links = GameObject .Find("Segel links");
segel_rechts_aussen = GameObject .Find("Segel rechts aussen ");
segel_links_aussen = GameObject .Find("Segel links aussen ");

68

Chapter 3. Functions 3.10. Controller

segel_dreh = GameObject .Find("Segel dreh");
spieler = GameObject .Find(" Spieler ");
handle_rechts = GameObject .Find(" Handle rechts ");
handle_links = GameObject .Find(" Handle links");

and initialize the controller parameters.
elevation_vorsteuerung_offset = -11.63f;
elevation_vorsteuerung_verstaerkung = 1f;
elevation_regler_verstaerkung = 10f;

rollwinkel_vorsteuerung_verstaerkung = 0f;
rollwinkel_regler_verstaerkung = 1f;

azimut_regler_verstaerkung = 10f;
azimut_vorsteuerung_verstaerkung = 1f;

handle_rollen = 1f;
}

Please note the already discussed negative feedforward offset (elevation_vorsteue-
rung_offset) of −11.63 because of the left-hand rule. The feedforward P controller
gain (elevation_vorsteuerung_verstaerkung) has a value of 1, assuming 1° of kite el-
evation increase with every 1° additional handle pitch. The feedback controller gain
(elevation_regler_verstaerkung) of 10 ensures a fast control reaction with a small
stationary error.
During the roll tutorial, we lift the leading edge of the target kite to 1m and then roll
it about a point in the “middle” of the kite, half way down27 (25 cm) from the leading
edge (figure 3.7).

27Yes, the center of mass of this isosceles triangle is at 1
3 · 50 cm = 16.6̄ cm down from the leading edge,

but we roll the (target) handles and correspondingly the (target) kite about the middle of the handle
object (axis tripod in figure 2.58).

69

Chapter 3. Functions 3.10. Controller

Figure 3.7: Point of rotation

Therefore, we define a new invisible game object segel_dreh (axis tripod in figure 3.7)
as the kite’s point of rotation. In every simulation step
void FixedUpdate ()
{

we obtain its position, with its origin raised up 75 cm
drachen_x = segel_dreh . transform . position .x;
drachen_y = segel_dreh . transform . position .y - 0.75f;
drachen_z = segel_dreh . transform . position .z;

and read the current step of the tutorial:
int solldrachen_zustand =
spieler . GetComponent < Controllereingaben >(). solldrachen_zustand ;

If we are in the large roll angle tutorial
if (solldrachen_zustand == 4)
{

we switch off the roll feedforward
rollwinkel_vorsteuerung_verstaerkung = 0f;

and indicate that we want to roll the complete handle object:

70

Chapter 3. Functions 3.10. Controller

handle_rollen = 1f;
}

In any other tutorial step we use an appropriate roll feedforward gain and switch off the
handle roll:
else
{

rollwinkel_vorsteuerung_verstaerkung = 0.062f;
handle_rollen = 0f;

}

Elevation angle According to figure 3.5, we compute the necessary handle pitch angle
η to achieve a certain elevation setpoint angle εs by taking the control error between the
the elevation setpoint angle εs and the actual elevation angle ε, amplify this error by the
feedback controller gain KF B, and add the feedforward path according to figure 3.6:

η = KF B · (εs − ε) +KF F · εs + offset (3.5)

We now run into a little problem: Unity does not know about negative angles and returns
the elevation setpoint angle εs (elevation_soll)
elevation_soll = solldrachen . transform . rotation . eulerAngles .x;

in the range
0◦ ≤ εs < 360◦

while the arcsine function we use to compute the actual elevation angle ε has a range of

−90◦ ≤ ε < 90◦

In order to make εs = 350◦ comparable to ε = −10◦, we express setpoint angles in the
third28 and fourth quadrant as negative numbers:
if (elevation_soll > 180)
{

elevation_soll -= 360;
}

We compute the actual elevation angle ε according to figure 3.4 with a line length of
10m:
elevation_ist = -Mathf. Rad2Deg * Mathf.Asin(drachen_y / 10f);

The elevation control error is the difference between setpoint εs and actual angle ε:
elevation_regelfehler = elevation_soll - elevation_ist ;

28In the tutorial, we assume the kite always to be in front of (and not behind) the pilot; the |ε| ≤ 90◦

of the arcsine function should therefore be sufficient.

71

Chapter 3. Functions 3.10. Controller

Finally, we compute the necessary handle pitch angle η (elevation_stellgroesse) to
achieve the elevation setpoint angle according to equation (3.5):
elevation_stellgroesse =
elevation_regler_verstaerkung * elevation_regelfehler +
elevation_vorsteuerung_verstaerkung * elevation_soll +
elevation_vorsteuerung_offset ;

Roll angle The user has two different ways to make the kite roll: For a small, fast roll,
she can pitch the handles asymmetrically (upper end of one handle towards her, upper
end of the other handle away from her). For larger roll angles, she might want to slowly
roll both handles as a whole, synchronously29 about the origin of the Handles object in
figure 2.15. We use this second way to roll the kite in the fourth tutorial step, described
on page 66.
The computation of the necessary handle roll angle to achieve a certain kite roll angle
is similar to the elevation control in the previous paragraph: We retrieve the roll angle
of the target kite in order to use it as a setpoint (rollwinkel_soll)
rollwinkel_soll = solldrachen . transform . rotation . eulerAngles .z;

and map it to the appropriate range:
if (rollwinkel_soll > 180)
{

rollwinkel_soll -= 360;
}

For the computation of the actual kite’s roll angle we retrieve the roll angles of the right
float segel_rechts_rollwinkel =
segel_rechts . transform . eulerAngles .z;

if (segel_rechts_rollwinkel > 180)
{

segel_rechts_rollwinkel -= 360;
}

and the left sail (both mapped into the correct range)
float segel_links_rollwinkel =
segel_links . transform . eulerAngles .z;

if (segel_links_rollwinkel > 180)
{

segel_links_rollwinkel -= 360;
}

29Just like you would use a steering wheel of a car.

72

Chapter 3. Functions 3.10. Controller

and compute their mean30:
rollwinkel_ist =
(segel_rechts_rollwinkel + segel_links_rollwinkel) / 2f;

if (rollwinkel_ist > 180)
{

rollwinkel_ist -= 360;
}

As in the elevation case, we compute the roll control error
rollwinkel_regelfehler = rollwinkel_soll - rollwinkel_ist ;

and the commanded handle roll angle utilizing feedback (rollwinkel_regler_ver-
staerkung) and feedforward31 (rollwinkel_vorsteuerung_verstaerkung) control:
rollwinkel_stellgroesse =
rollwinkel_regler_verstaerkung * rollwinkel_regelfehler +
rollwinkel_vorsteuerung_verstaerkung * rollwinkel_soll ;

In the tutorial, very large target handle asymmetrical roll angles might become difficult
to interpret. Therefore, we limit the handle roll angle magnitude to 40°:
float rollwinkel_stellgroesse_max = 40;

if (rollwinkel_stellgroesse > rollwinkel_stellgroesse_max)
{

rollwinkel_stellgroesse = rollwinkel_stellgroesse_max ;
}

else if (rollwinkel_stellgroesse < -rollwinkel_stellgroesse_max)
{

rollwinkel_stellgroesse = -rollwinkel_stellgroesse_max ;
}

For the asymmetrical roll, one handle has to pitch forward and the other handle has
to pitch backwards. Therefore, we have to access each handle separately by using the
GetChild method:
transform . GetChild (0). localRotation =
Quaternion .Euler(new Vector3 (- rollwinkel_stellgroesse , 0, 0));

transform . GetChild (1). localRotation =
Quaternion .Euler(new Vector3 (rollwinkel_stellgroesse , 0, 0));

30Even though the roll angles of both sails should always be identical since they are connected via a
inflexible hinge, we found the simulation to be a bit more stable if we used the average of both sails,
possibly for numerical reasons.

31We do not need an offset in the roll feedforward controller because the roll degree of freedom is
symmetrical. We need a handle pitch offset to float the kite above the ground with a zero elevation
angle but we do not need a handle roll offset to achieve a steady kite roll angle of zero.

73

Chapter 3. Functions 3.10. Controller

Azimuth angle To move the kite to the left or the right, we rotate the whole handle
object around its vertical axis. The computation of the necessary handle azimuth angle
is similar to the already discussed handle roll angle computation. We read the azimuth
angle setpoint
azimut_soll = solldrachen . transform . rotation . eulerAngles .y;

and transform it into a useful range:
if (azimut_soll > 180)
{

azimut_soll -= 360;
}

We compute the current azimuth angle of the kite using its position in the X-Z-plane
azimut_ist = Mathf. Rad2Deg * Mathf.Atan2(drachen_x , drachen_z);

and compute the error as the difference of setpoint and actual value:
azimut_regelfehler = azimut_soll - azimut_ist ;

Finally, we compute the necessary handle azimuth angle (azimut_stellgroesse):
azimut_stellgroesse =
azimut_vorsteuerung_verstaerkung * azimut_soll +
azimut_regler_verstaerkung * azimut_regelfehler ;

Handle setting Now that we computed all necessary handle angles, we can finally set
the attitude of the handles. We have already set the binary flag handle_rollen to 1
or 0 depending on the current tutorial step on page 71; we can now use it as a gain in
order to decide whether or not we want the handles to roll as a whole:
transform . localRotation = Quaternion .Euler(new Vector3 (
elevation_stellgroesse ,
azimut_stellgroesse ,
handle_rollen * rollwinkel_soll));

The user can hold her handles at an arbitrary height. We want the target handles to
automatically adjust their height to the user defined handle height. We read the position
of the target handles32

Vector3 sollhandles_position = transform . position ;

compute the height of the target handles as the mean of the heights of both actual
handles

32Again, we did not find a way to adjust the Y-component of the position vector directly. Any idea?

74

Chapter 3. Functions 3.11. Lines

sollhandles_position .y =
(
handle_rechts . transform . position .y +
handle_links . transform . position .y
) / 2;

and transfer the adjusted position vector back to the target handles
transform . position = sollhandles_position ;
}
}

3.11 Lines

As already discussed on page 9 and in section 2.10, we “fake” the lines between the
handles and the kite by four Line Renderer objects that simply draw polygons without
any physical properties.
In the line (seil) function
using System . Collections ;
using System . Collections . Generic ;
using UnityEngine ;

public class seil : MonoBehaviour
{

we declare the line renderer object
LineRenderer line_renderer ;

and since we use the same script for all four lines, we also have to declare the begin
(Anfang) and end (Ende) of every line and define them manually (figure 2.48):
public GameObject anfang ;
public GameObject ende;

Additionally, we declare the player (spieler) object in order to retrieve the current line
length:
GameObject spieler ;

We use 101 vertices (100 segments) for each line
static readonly int n_punkte = 101;

and declare the corresponding polygon vector:
private Vector3 [] neue_position = new Vector3 [n_punkte];

75

Chapter 3. Functions 3.11. Lines

Since we want that part of the lines potentially piling up the ground to look a bit more33

“random”, every line gets its own superimposed sine phase:
private float phase;

During the initialization
void Start ()
{

we access the player
spieler = GameObject .Find(" Spieler ");

and tell the polygon that it has 101 vertices:
line_renderer = GetComponent < LineRenderer >();
line_renderer . positionCount = n_punkte ;

Using the name34 of the sail the current line is attached to, we give each line its own
phase:
if (ende.name == "Segel rechts oben")
{

phase = 0;
}
else if (ende.name == "Segel rechts unten")
{

phase = 20;
}
else if (ende.name == "Segel links oben")
{

phase = 40;
}
else if (ende.name == "Segel links unten")
{

phase = 60;
}
}

In every graphical simulation step
void Update ()
{

33We can not utilize an actual random number generator, because these random numbers would be
totally different in every simulation step, making the lines on the ground jiggle around absolutely
unrealistically. Yes, we could compute an array of random numbers in advance and than use sections
of that array . . .

34This seems to be more “quick-and-dirty” than good programming style. What would be the proper
way to address the specific current line?

76

Chapter 3. Functions 3.11. Lines

we read the current line length (seillaenge)
float seillaenge =
spieler . GetComponent < Controllereingaben >(). seillaenge ;

and the current distance (abstand) between the handle and the kite
float abstand = Vector3 . Distance (
ende. transform .position ,
anfang . transform . position);

and start a loop over every polygon vertex:
for (int i = 0; i < n_punkte ; i++)
{

We need a floating point parameter t (running from 0.0 to 1.0) to compute the position
of each vertex:

float t = (float)i / (n_punkte - 1);

According to figure 3.8, we want the line to sag down (blue curve) if the distance between
the handles and the kite (bottom left part of the red line) is less35 than the line length
(entire red line).

Kite

Handles

Control

Figure 3.8: Bézier line emulation

One way to achieve this is to utilize a Bézier curve [12]. A quadratic Bézier curve uses
three points (P1: start, P2: control, P3: end) to compute intermediate points P (t) via

P (t) = (1− t)2 · P1 + 2 · (1− t) · t · P2 + t2 · P3, 0 ≤ t ≤ 1 (3.6)

Naturally, we chose P1 at the handle and P3 at the kite, leaving us with a free choice of
the control point P2. In a perfect world, we would now use the control point to ensure
35This happens if the user rapidly increases the line length or if she quickly decreases the angle of

attack until the kite loses its lift and floats downwards (figure 3.10).

77

Chapter 3. Functions 3.11. Lines

that the line integral (or at least the sum of the polygon segment lengths) of the blue
curve in figure 3.8 equaled the line length and that its curvature was shaped by the wind
and the own weight of the line. In RevSim, we simply rotate the excess part of the line
length that sticks out past the kite in figure 3.8 down below the kite and thus obtain
the control point P2.
There is absolutely no mathematical or physical justification for this simplified approach
but it ensures that

1. The line is straight if the distance between the handles and the kite equals the line
length; the control point P2 is identical with the kite P3 in that case.

2. The sagging becomes more pronounced if the difference between the handle-kite-
distance and the line length increases.

3. It looks quite natural, imitating the wind induced shape of the blue curve in
figure 3.8.

We are now ready to pour equation (3.6) into code:
neue_position [i] =
(1 - t) * (1 - t) * anfang . transform . position +
2 * (1 - t) * t * (
ende. transform . position +
new Vector3 (0, abstand - seillaenge , 0)) +
t * t * ende. transform . position ;

On the ground If the kite has a low altitude and is close enough to the user, part of
the Bézier curve extends below ground level. Since the curve does not have a rigid body,
we have to take care of the shape of the lines on the ground by ourselves. If the current
Bézier vertex is below the ground

if (neue_position [i].y < 0)
{

we superimpose three sinusoidal functions with different frequencies (figure 3.9)

∆x = 0.02(sin(9z + φ) + sin(5z + φ) + sin(3z + φ))

78

Chapter 3. Functions 3.11. Lines

0 1 2 3 4 5 6 7 8 9 10

-0.1

-0.05

0

0.05

0.1

Figure 3.9: Superimposed sinusoidal functions (∆x over z)

and add the value to the X-component (left-right) of the vertex with an amplitude of
2 cm:

neue_position [i].x += 0.02f * (
Mathf.Sin (9 * (neue_position [i].z + phase)) +
Mathf.Sin (5 * (neue_position [i].z + phase)) +
Mathf.Sin (3 * (neue_position [i].z + phase)));

In order to make the vertex visible, we move it one millimeter above the ground
neue_position [i].y = 0.001f;

}
}

Finally, we hand all computed vertices over to the polygon:
line_renderer . SetPositions (neue_position);
}
}

Since every line has its own phase offset (picking a different section of the graph in
figure 3.9) the lines on the ground in figure 3.10 look adequately36 random.
36One drawback of the simple way we model the lines on the ground is the fact that every motion of

the handles also moves the whole line on the ground and even that section from the ground to the
kite (figure 3.10).

79

Chapter 3. Functions 3.12. Water drag

Figure 3.10: Lines on the ground (lines selected for better recognizability)

3.12 Water drag

Water generates more drag than air. Therefore, we want a part of the kite that is under-
water to move slower than the rest of the kite: If e. g. the kite moves fast, horizontally
just above the sea surface and (accidentally) one of its tips dips into the water, a signif-
icant rolling moment should occur. Additionally, we want to give the user a chance to
slowly “fly” the kite completely37 in the ocean; e. g. to relaunch it from underwater.
Unity makes it very comfortable to model this behavior: We just have to position child
game objects at every vertex of the kite (partly visible in figure 2.53) and introduce an
additional force vector to the corresponding sail at the vertex location if this vertex38

is below the ocean surface. The corresponding moment vector is than automatically
computed and applied by Unity’s friendly physics engines.
In the water drag (Wasserkraft) function, attached to every kite vertex object
using System . Collections ;
using System . Collections . Generic ;
using UnityEngine ;

public class Wasserkraft : MonoBehaviour
{

37Since the Water Prefab makes the water semitransparent you can still see the kite if it is not too
deep below the surface.

38Yes, we could precisely compute the affected underwater areas and their angles with respect to the
velocity vector in order to come up with the exact magnitudes and locations of the additional water
forces. On the other hand, simple single vertex forces seem to create a satisfactory illusion of kite
water interactions.

80

Chapter 3. Functions 3.13. Wind velocity

we declare
Rigidbody Segel;

and initially access the sail (Segel) as the parent of the current vertex child:
void Start ()
{
Segel = gameObject . GetComponentInParent <Rigidbody >();
}

In every (physical) simulation step
void FixedUpdate ()
{

we test if the current vertex is below sea 39 level
if (transform . position [1] < 0f)
{

and add a force40 to the sail at the location of the vertex acting in the opposite direction
of the current velocity vector

Segel. AddForceAtPosition (
-Segel.velocity , transform . position);

}
}
}

3.13 Wind velocity

As already stated in section 2.4.1, we use the Wind Zone object just to make the palms
bend in a realistic animated fashion; the much more complex aerodynamic force compu-
tation is done in section 3.1. We add the wind velocity (Windgeschwindigkeit) function
to the Wind Zone object
using System . Collections ;
using System . Collections . Generic ;
using UnityEngine ;

public class Windgeschwindigkeit : MonoBehaviour
{

39As long as the kite flies above ground (and not water), the collision detection algorithms of the physics
engines ensure that no part of the kite can dunk into the ground.

40Empirically, we set the value of the additional water force coefficient to 1N per 1 m
s . Fun fact: If you

increase this coefficient significantly, you can create cute comic-like bouncy effects if the user tries
to ram the kite into the water with high velocity.

81

Chapter 3. Functions 3.13. Wind velocity

and declare the wind zone and the player:
WindZone wind;
GameObject spieler ;

In the initialization, we address the wind zone and the player (spieler):
void Start ()
{
wind = gameObject . GetComponent <WindZone >();

spieler = GameObject .Find(" Spieler ");
}

In every simulation step
void FixedUpdate ()
{

we read the user controlled wind speed setting (page 50) and use it for the turbulent
wind. windTurbulence =
0.1f * spieler . GetComponent < Controllereingaben >().
windgeschwindigkeit ;

and the linear wind zone parameter:
wind. windMain = wind. windTurbulence ;
}
}

82

Bibliography

[1] Revolution Kites. (2019). [Online]. Available: https://revkites.com/
[2] Unity. (2019). [Online]. Available: https://unity.com
[3] Oculus. (2019). [Online]. Available: https://www.oculus.com/
[4] J. J. Buchholz. (2019) RevSim. [Online]. Available: https://m-server.fk5.

hs-bremen.de/revsim/revsim.html
[5] Sketchup. (2019). [Online]. Available: https://www.sketchup.com/
[6] CorelDraw. (2019). [Online]. Available: https://www.coreldraw.com/de/
[7] Wikipedia. (2019) Z-fighting. [Online]. Available: https://en.wikipedia.org/wiki/

Z-fighting
[8] A. Shamaluev. (2019) AShamaluevMusic. [Online]. Available: https://www.

ashamaluevmusic.com/
[9] W. Commons. (2019) Sound of waves on Nauset Beach after sunset. [Online].

Available: https://commons.wikimedia.org/wiki/File:NausetBeach.ogg
[10] Wikipedia. (2019) Flight director (aeronautics). [Online]. Available: https:

//en.wikipedia.org/wiki/Flight_director_(aeronautics)
[11] J. J. Buchholz. (2019) Regelungstechnik und Flugregler. [Online]. Available:

https://m-server.fk5.hs-bremen.de/rtfr/skript/skript10.pdf
[12] Wikipedia. (2019) Bézier curve. [Online]. Available: https://en.wikipedia.org/wiki/

Bezier_curve

83

https://revkites.com/
https://unity.com
https://www.oculus.com/
https://m-server.fk5.hs-bremen.de/revsim/revsim.html
https://m-server.fk5.hs-bremen.de/revsim/revsim.html
https://www.sketchup.com/
https://www.coreldraw.com/de/
https://en.wikipedia.org/wiki/Z-fighting
https://en.wikipedia.org/wiki/Z-fighting
https://www.ashamaluevmusic.com/
https://www.ashamaluevmusic.com/
https://commons.wikimedia.org/wiki/File:NausetBeach.ogg
https://en.wikipedia.org/wiki/Flight_director_(aeronautics)
https://en.wikipedia.org/wiki/Flight_director_(aeronautics)
https://m-server.fk5.hs-bremen.de/rtfr/skript/skript10.pdf
https://en.wikipedia.org/wiki/Bezier_curve
https://en.wikipedia.org/wiki/Bezier_curve

	Manual
	Introduction
	25 years later

	Installation
	Operation

	Objects
	Coordinate system
	Kite
	Right sail

	Player
	Camera
	Handles
	End caps and help plates

	Ground
	Wind Zone

	Sea
	Sea bottom

	Display
	Help

	Start square
	Palm trees
	Rocks
	Lines
	Sounds
	Music
	Ocean waves
	Ground collision

	Target kite
	Target kite right sail

	Target handles
	Right target handle
	Target handle traverse

	Entitlement and Focus Check

	Functions
	Aerodynamics
	Data display
	Controller input
	Reset
	Right controller vibrate

	Entitlement check
	Focus Check
	Game pause
	Game resume
	VRFocusLost
	VRFocusFound

	Ground collision
	Both controllers vibrate

	Left handle
	Right handle
	Setpoint generator
	Controller
	Lines
	Water drag
	Wind velocity

