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Nomenclature

α angle of attack

α subjective weighting factor

q̄ dynamic pressure

β side-slip angle

χ flight-path azimuth

δ (t) ideal impulse (Dirac impulse)

δη stick deflection (pull)

δξ stick deflection (to the right)

δζ pedal deflection

η elevator deflection

γ flight-path (inclination) angle, angle of climb

ℑ (z) imaginary part of a complex number

L Laplace operator

L−1 inverse Laplace operator

∇ Nabla operator

ω angular frequency

ω0 natural angular frequency

ωE corner frequency

ωm centre frequency

Z conjugate quaternion

ℜ (z) real part of a complex number

ρ air density

τ time (as integration variable)
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ε angle of the pole with respect to the imaginary axis

ε infinitesimal small value

Φ roll angle, bank angle

φ phase angle, phase shift

Ψ yaw angle

Θ pitch angle

Ω angular velocity vector

Φ attitude vector (Euler angle vector)

A system matrix, state matrix

B input matrix, control matrix

C output matrix, measurement matrix

D angular momentum vector

D feedforward matrix, direct transmission matrix

f vector differential equation

G weight vector

g vector output equation

I inertia tensor

Mfa transformation matrix from the aerodynamic to the body-fixed axis system

Mfg transformation matrix from the geodetic to the body-fixed axis system

Mkg transformation matrix from the geodetic to the flight-path axis system

MΩ quaternion differential equation matrix

n axis of rotation vector of a quaternion

P momentum vector

Q moment vector

rF distance of the engine from the reference point

R resulting force vector

s position vector (direction, distance)

u input vector

V velocity vector
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v output vector

x state vector

Ξ angle of rotation of a quaternion

ξ aileron deflection

ζ rudder deflection

A amplitude (ratio)

A area

A lift

a real part of a quaternion

b, c, d imaginary parts of a quaternion

c spring constant

CA lift coefficient

Cl roll moment coefficient

Cm pitch moment coefficient

Cn yaw moment coefficient

CQ side force coefficient

CW drag coefficient

CAα lift due to angle of attack etc.

CW 0 zero drag

D damping

d (t) square wave pulse

dB dezibel

E aerodynamic force unit

e (t) control error, control difference, deviation

emax maximum overshoot

F force

f frequency

f (t) ramp response in time domain

Fc thrust reference
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g gravitational acceleration

G (s) transfer function

g (t) impulse response in time domain

G (z) transfer function in the z-domain

G0 open loop transfer function

Gg overall transfer function

GM sensor transfer function

GR controller transfer function

GS plant transfer function

GV forward transfer function

GV open loop controller transfer function

Gz disturbance transfer function

Gew reference control error

Gez disturbance control error

GSt disturbance feedforward transfer function

H (s) step response in frequency domain

h (t) step response in time domain

I integral criteria

i, j, k imaginary units of a quaternion (or of a complex number)

Ix, Iy, Iz moments of inertia

Ixz product of inertia

K gain

k integer number

Kβ side-slip angle controller

Kχ flight-path azimuth controller

KΦ bank angle controller

KΘ pitch controller

KH altitude controller

KH auxiliary variable
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KR controller gain

KV airspeed controller, autothrottle

Kηq pitch damper

Kξp roll damper

Kζr yaw damper

KRkrit
amplitude reserve, critical gain

L roll moment

lµ mean aerodynamic chord

M pitch moment

m mass

Ma Mach number

N yaw moment

p roll speed

p∗
A normalised aerodynamic roll speed etc.

Q side force

q pitch speed

r damping factor

r magnitude of a complex number

r yaw speed

r (t) unit ramp

s Laplace variable

S (s) unit step in frequency domain

s (t) unit step in time domain

T period

T sampling time

t time

tε magnitude of the control error stays less than ε

TD D-element time constant

TF engine time constant
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Tg compensation time

TI integrator time constant

TN normalisation time constant

TN reset time

TT dead time constant

Tu delay time

TV reset time

tan response time

Tkrit period of the critical oscillation

u forward speed

U (s) input variable in frequency domain

u (t) input variable in time domain

uk input variable in z-domain

v side speed

V (s) output variable in frequency domain

v (t) output variable in time domain

VA aerodynamic speed, air speed

vk output variable in z-domain

W drag

w sink speed

w (t) reference input variable

X x component of the force vector (towards the front)

x state variable

x x component of the position vector (towards the front)

x (t) controlled variable

Y y component of the force vector (towards the right)

y y component of the position vector (towards the right)

y (t) manipulated variable

Z quaternion
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Z z component of the force vector (towards the bottom)

z complex number

z independent variable of the transfer function in the z-domain

z z component of the position vector (towards the bottom)

z (t) disturbance

Z0 unit quaternion

ZD unit quaternion of rotation

ZΩ flight-path angular velocity quaternion

Index A aerodynamic

Index a aerodynamic axis system

Index F thrust

Index f body-fixed axis system

Index g geodetic axis system, Earth-fixed axis system

Index K flight-path

Index k flight-path axis system

Index W wind

PFD partial fraction decomposition

img/
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Chapter 1

Introduction

1.1 Block Diagrams and Terminology

1.1.1 Standards

DIN 19221 Control technology; letter symbols

DIN 19225 Naming and classification of controllers

DIN 19226 Control Engineering, Definitions and terms

VDI/VDE 3526 Designations for control and regulating circuits

1.1.2 Signal Connections

u

v
2

v
1

(a) Branch point:
v1 = v2 = u

-

u
1

u
2

v

(b) Addition or subtrac-
tion point:
v = u1 − u2

u
1

u
2

v

(c) Multiplication point:
v = u1 · u2

Figure 1.1: Signal connections.

1.1.3 Blocks

u(t) v(t)
vT + v = u
.

Figure 1.2: Differential equation.
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u(t) v(t)

Figure 1.3: Step response.

G(s) =
1

Ts + 1

U(s) V(s)

Figure 1.4: Transfer function.

1.1.4 Terminology

Table 1.1: Variables for Automatic Control

u input variable

v output variable

w reference input variable, command, setpoint variable

x control(led) variable

e control error, control difference, deviation, error signal,

y manipulated variable, correcting variable

z disturbance (variable)

s Laplace variable, complex frequency

G (s) transfer function

1.2 Open Loop and Closed Loop Control

1.2.1 Open Loop Control

w y xOpen loop
controller

Plant

Figure 1.5: Open loop control.

• Open sequence of effects, no feedback
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• Can only compensate for known disturbances

• Cannot become unstable

• Fast

1.2.2 Closed Loop Control

ew y xClosed loop
controller

Plant
-

Figure 1.6: Closed loop control.

• Closed control loop

• Can also compensate for unknown disturbances

• May become unstable

• Slower

1.3 Special Excitation Functions and System Response

1.3.1 Step

s (t) =


1 if t > 0
0.5 if t = 0
0 if t < 0

s(t)

t

1

0.5

Figure 1.7: Unit step.

1.3.2 Ramp

r (t) =
t if t ≥ 0

0 if t < 0

r(t)

t

1

1

Figure 1.8: Unit ramp.
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1.3.3 Square Wave Pulse

d (t) =
1/ε if 0 ≤ t ≤ ε

0 otherwise

d(t)

tε

1
ε A = 1

Figure 1.9: Unit square wave pulse.

1.3.4 Ideal Impulse (Dirac Impulse)

δ (t) = lim
ε→0

d (t) =
∞ if t = 0

0 otherwise

δ(t)

t

A = 1

Figure 1.10: Ideal impulse (Dirac
impulse).

1.3.5 Sine

x (t) = sin ωt

x(t)

t
2π
ω

1

-1

Figure 1.11: Unit sine.

1.3.6 Relation between Ramp, Step and Impulse
∂
∂t−−−−→

∂
∂t−−−−→

r (t) s (t) δ (t)
←−−−−−∫

dt
←−−−−−∫

dt
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1.3.7 System Response

r(t) f(t)

s(t) h(t)

d(t) g(t)

System

Ramp response

Step response

Impulse response

Figure 1.12: System responses.

1.4 Static and Dynamic Behaviour

u(t) v(t)
System

Figure 1.13: General (static or dynamic) system.

1.4.1 Static Behaviour (Static Characteristic Curve)

• Example: ideal measuring amplifier

• Change in the output variable only if the input variable is currently changing

• No energy storage → no self-movement (no intrinsic dynamics)

• Description using algebraic equation

1.4.2 Dynamic Behaviour

• Example: pendulum

• Change in the output variable without the input variable currently changing

• Internal energy storage is charged and discharged → self-movement (intrinsic dy-
namics)

• Description using differential equations

18



u(t)

t

(a) Step inputs

v(t)

t

(b) Step outputs

v∞

u∞

(c) Steady-state (static)
nonlinear characteristic

Figure 1.14: Dynamic Behaviour.

1.5 Linear and Non-Linear Behaviour

In many ways, linear systems are easier to use than non-linear systems. They are generally
much easier to analyse, control and simulate. To check whether a general nonlinear system
of the form v = g (u) is linear, two linearity conditions are used, both of which must be
fulfilled:

K

K

u

u

Linear
system g( )

Linear
system g( )

.K u .g(K u)

.K g(u)g(u)

Figure 1.15: Gain principle: g (K · u) != K · g (u).

u1

g(u )1u1

u + u1 2

u2

g(u )2u2

Linear
system g( )

Linear
system g( )

Linear
system g( )

g(u + u )1 2

g(u ) + g(u )1 2

Figure 1.16: Superposition principle: g (u1 + u2) != g (u1) + g (u2).
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% “If it works for one input amplitude, it always works.”

% The order of linear blocks is interchangeable: g (h (u)) = h (g (u))

1.5.1 Linear Blocks

• Integrator

• Differentiator

• Gain (constant)

• Sum

• Time delay

• Composite blocks: PT1, PT2, PD-T1-filter, PID-controller, . . .

• General transfer function

• Linear state space representation

20



Chapter 2

Linear Systems

2.1 Second-Order Mechanical Oscillator

c

r

v, v, v, F
. ..

m

Figure 2.1: Second-order mechanical oscillator (v: displacement).

cv

Frv
.

m

mv
..

Figure 2.2: Free-body second-order oscillator.

Second-order linear inhomogeneous differential equation:

mv̈ + rv̇ + cv = F

Normal form:
v̈ + r

m
v̇ + c

m
v = F

m

General second-order system:

v̈ + 2Dω0v̇ + ω2
0v = Kω2

0u

21



Input variable:
u = F

Natural angular frequency:

ω2
0 = c

m
⇒ ω0 =

√
c

m

Damping:
2Dω0 = r

m
⇒ D = r

2mω0
= r

2m
√

c
m

= r

2
√

cm

Gain factor:
Kω2

0 = 1
m

⇒ K = 1
mω2

0
= 1

m c
m

= 1
c

u(t) v(t)
v + 2D v + = Kw0 w w0

2

0

2
v u

.. .

Figure 2.3: Block diagram of second-order oscillator.

2.1.1 Impulse Response

Impulse as input variable: u (t) = δ (t)

g(t)

t

D = 0.1

(a) D = 0.1

g(t)

t

D = 1

(b) D = 1

Figure 2.4: Impulse response g (t).

2.1.2 Step Response

Step as input variable: u (t) = s (t)
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h(t)

t

D = 0.1

(a) D = 0.1

h(t)

t

D = 1

(b) D = 1

Figure 2.5: Step response h (t).

2.2 Laplace Transform (of a PT2)

Differential equation:

v̈ + 2Dω0v̇ + ω2
0v = Kω2

0u

Initial values are equal to zero:

v(0) = v̇(0) = 0

DE

G(s)

u(t) v(t)

U(s) .V(s) = G(s) U(s)

1
2

3

4

Figure 2.6: Solution of a differential equation using Laplace transform.

Laplace transform:

• of the input function: L{u (t)} = U (s)

• of the output function: L{v (t)} = V (s)

• of the first derivative of the output function: L{v̇ (t)} = s · V (s)

• of the second derivative of the output function: L{v̈ (t)} = s2 · V (s)
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Transformed differential equation:

s2V (s) + 2Dω0sV (s) + ω2
0V (s) = Kω2

0U (s)

Transfer function:

G (s) = V (s)
U (s) = Kω2

0
s2 + 2Dω0s + ω2

0

2.2.1 Table of some Laplace Transforms

x (t) L{x (t)} = X (s)

δ (t) 1

s (t) = 1 1
s

r (t) = t 1
s2

e−at 1
s+a

e−at sin ωt ω
(s+a)2+ω2

e−at cos ωt s+a
(s+a)2+ω2

Table 2.1: The most important Laplace transforms.

2.2.2 Example: Step Response of a PT2

Transfer function:

G (s) = 1
s2 + s + 1 (ω0 = 1, K = 1, D = 0.5)

Step:

L{s (t)} = S (s) = 1
s

Step response:

H (s) = G (s) · S (s) = 1
s2 + s + 1 ·

1
s

Partial fraction decomposition:

H (s) = As + B

s2 + s + 1 + C

s

24



Same denominators:

1
(s2 + s + 1)s = (As + B)s + C(s2 + s + 1)

(s2 + s + 1)s

Coefficient comparison in the numerator:

s0 : 1 = C ⇒ C = 1
s1 : 0 = B + C = B + 1 ⇒ B = −1
s2 : 0 = A + C = A + 1 ⇒ A = −1

Result of the partial fraction decomposition:

H (s) = 1
s
− s + 1

s2 + s + 1

Completing the square:

H (s) = 1
s
− s + 1(

s + 1
2

)2
+ 1− 1

4

= 1
s
− s + 1(

s + 1
2

)2
+ 3

4

Comparison with Laplace transform table (table 2.1):

a = 1
2 ω =

√
3
4 =

√
3

2

Adapt numerator to table by splitting:

H (s) = 1
s
−

s + 1
2(

s + 1
2

)2
+ 3

4

−
1
2(

s + 1
2

)2
+ 3

4

Adapt the third addend to the table:

H (s) = 1
s
−

s + 1
2(

s + 1
2

)2
+ 3

4

−
1
2

√
3
4

√
4
3(

s + 1
2

)2
+ 3

4

Ready to transform back:

H (s) = 1
s
−

s + 1
2(

s + 1
2

)2
+ 3

4

− 1√
3

√
3
4(

s + 1
2

)2
+ 3

4

Step response in the time domain:

h (t) = L−1 {H (s)} = 1− e− 1
2 t cos

√
3
4t− 1√

3
e− 1

2 t sin
√

3
4t (2.1)
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Period:

ω =
√

3
4 = 2πf = 2π

T
⇒ T = 2π√

3
4

= 4π√
3
≈ 7.2

0 2 4 8 106

0.5

0.0

1.0

T ~ 7.2~

t

h(t)

Figure 2.7: Step response of a second-order system (D = 0.5).

2.3 Limit Theorems

Initial value theorem:
f (t = 0) = lim

t→0
f (t) = lim

s→∞
s · F (s)

Final value theorem:
lim
t→∞

f (t) = lim
s→0

s · F (s)

2.3.1 Example: Step Response of a PT2

General (final value theorem):

lim
t→∞

h (t) = lim
s→0

s ·H (s) = lim
s→0

s ·G (s) · 1
s

= lim
s→0

G (s)

Special (PT2):

lim
t→∞

h (t) = lim
s→0

G (s) = lim
s→0

Kω2
0

s2 + 2Dω0s + ω2
0

= Kω2
0

ω2
0

= K

2.4 Poles of the Transfer Function

Example: Second-order system (PT2)
Transfer function:

G (s) = Kω2
0

s2 + 2Dω0s + ω2
0
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Poles are zeros of the denominator:

s2 + 2Dω0s + ω2
0 = 0

Two (real or complex conjugate) poles:

s1,2 = −Dω0 ±
√

D2ω2
0 − ω2

0 = −Dω0 ± ω0
√

D2 − 1

Case distinction:

Table 2.2: Position of the Poles Depending on the Damping

|D| > 1 s1,2 = −Dω0 ± ω0
√

D2 − 1 two real poles

|D| < 1 s1,2 = −Dω0︸ ︷︷ ︸
σ

±j ω0
√

1−D2︸ ︷︷ ︸
ω

complex conjugate pair of poles

D = 0 s1,2 = ±jω0 complex conjugate pair of poles on the
imaginary axis

D = 1 s1,2 = −ω0 real double pole on the left half-plane

D = −1 s1,2 = ω0 real double pole on the right half-plane
(unstable)

jw

s

stable unstable

D < 0
D = 0

D = 1
D < 1

D > 1
w

0 e

s

s

Figure 2.8: Pole distribution of a second-order system.

Stability: “A system with at least one pole in the right half-plane is unstable.”
Natural frequency is distance from the origin:

|σ|2 + ω2 = |−Dω0|2 +
(
ω0
√

1−D2
)2

= D2ω2
0 + ω2

0

(
1−D2

)
= ω2

0

“The closer to the origin, the slower.”
Relationship between angle ε and damping D (in the second quadrant):

sin ε = |σ|
ω0

= Dω0

ω0
= D

“The closer to the imaginary axis, the worse the damping”
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2.5 Frequency Response

Sine input:
u (t) = Au sin ωt

.u(t) = A sin(wt)u
.v(t) = A sin(wt + j)vLinear system

Figure 2.9: Sine input and response of a linear system.

Steady-state sine response (transient process completed) has:

• same frequency ω

• different amplitude Av

• different phase (phase shift) φ

Au

Av

t

u(t)

v(t)

j

j

Figure 2.10: Sine input and response of a linear system.

The frequency response consists of the amplitude response (ratio of output to input amp-
litude over frequency) and the phase response (phase shift depending on frequency):

A
v

A
u

ω

Figure 2.11: Amplitude response.
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ω

ϕ

Figure 2.12: Phase response.

2.6 Bode Diagram and Nyquist Plot

2.6.1 Properties of Complex Numbers

Complex number in Cartesian form:

z = a + jb

Complex number in exponential form:

z = r · ejφ

j.Im(z)

Re(z)a

j.b z
r

ϕ

Figure 2.13: Point representation of the complex number z.

Magnitude:
|z| = r =

√
a2 + b2

Phase:
φ = arctan

(
b

a

)

Real part:
ℜ (z) = a = r · cos (φ)

Imaginary part:

ℑ (z) = b = r · sin (φ)
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Quotient of two complex numbers:

zQ = r1 · ejφ1

r2 · ejφ2
= a + jb

c + jd

Magnitude equals the quotient of the individual magnitudes:

|zQ| =
r1

r2
=
√

a2 + b2
√

c2 + d2

Phase equals the difference between the individual phases:

φQ = φ1 − φ2 = arctan
(

b

a

)
− arctan

(
d

c

)

The real and imaginary parts result from complex conjugate expansion:

zQ = a + jb
c + jd = a + jb

c + jd ·
c− jd
c− jd = ac− ajd + jbc− jbjd

cc− cjd + jdc− jdjd = ac + bd + j(bc− ad)
c2 + d2

Real part:
ℜ (zQ) = ac + bd

c2 + d2

Imaginary part:
ℑ (zQ) = bc− ad

c2 + d2

2.6.2 Logarithmic Scaling (Decibels)

Amplitude response double logarithmic scaling: logarithmic frequency and amplitude
in decibels

Phase response single-logarithmic scaling: logarithmic frequency only

Converting decibels:

• A [dB] = 20 · log10 A

• A = 10
A[dB]

20

Table 2.3: Some Conversion Examples

A[dB] 0 20 -40 80 6 3 −∞

A 1 10 0.01 10000 ≈ 2 ≈
√

2 0
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2.6.3 Example: Second-Order System (PT2)

Transfer function:
G (s) = 0.1

s2 + s + 1

Frequency response:

G (jω) = 0.1
(jω)2 + jω + 1

= 0.1
(1− ω2) + jω (2.2)

= 0.1
(1− ω2) + jω ·

(1− ω2)− jω
(1− ω2)− jω

= 0.1 · (1− ω2 − jω)
(1− ω2)2 + ω2

(2.3)

The amplitude response and the phase response follow from eqn. (2.2):
Amplitude response:

A (jω) = |G (jω)| = 0.1√
(1− ω2)2 + ω2

Phase response:
φ (ω) = − arctan

(
ω

1− ω2

)
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0

-20

-40

-60

-80

-100

1 10 100

w

0°

-90°

-180°

w

j

Amplitude response

Phase response

A
dB

Figure 2.14: Bode diagram: Amplitude response in decibels and phase response over
logarithmic frequency.

The real part and the imaginary part follow from eqn. (2.3):
Real part:

ℜ (G (jω)) = 0.1(1− ω2)
(1− ω2)2 + ω2

Imaginary part:

ℑ (G (jω)) = −0.1ω

(1− ω2)2 + ω2
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j Im(G).

Re(G)

0.1

-0.1j

ω = 0

ω = 1

ω
A

ϕ
ω ∞=

Figure 2.15: Nyquist plot: Imaginary part over real part of the frequency response with
frequency as the parameter of the plot.

2.7 P-Element

Other names: Proportional controller, gain
Example: (ideal) audio amplifier
“Differential equation” in the time domain:

v (t) = K · u (t)

“Differential equation” in the frequency domain:

V (s) = K · U (s)

Transfer function:

G (s) = V (s)
U (s) = K

Poles: none
Zeroes: none
Frequency response:

G (jω) = K

Amplitude response:

A = |G (jω)| = K

Phase response:
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φ = 0

ω

K

A

ω

ϕ

(a) Bode diagram

j.Im(G)

Re(G)

K
G

(b) Nyquist plot

Figure 2.16: P-element.

Step response in the frequency domain:

H (s) = G (s) · L {s (t)} = G (s) · 1
s

= K · 1
s

Step response in the time domain (compare to table 2.1):

h (t) = L−1 {H (s)} = L−1
{

K · 1
s

}
= K

K

h(t)

t

(a) Step response

u vK

(b) Block diagram

Figure 2.17: P-element.

2.8 PT1

Other name: Proportional control 1st-order time constant, First order low pass
Example: Charging a capacitor C via a resistor R

U
0

U
C

R

C

Figure 2.18: Example of a PT1.
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Differential equation in the time domain:

T v̇ (t) + v (t) = K · u (t)

Differential equation in the frequency domain:

V (s) · (Ts + 1) = K · U (s)

Transfer function:

G (s) = V (s)
U (s) = K

Ts + 1

Poles:

Ts + 1 = 0 ⇒ s = − 1
T

Zeroes: none

j.Im(s)

Re(s)

s

1

T

Figure 2.19: Poles (and zeros) of a (stable) PT1.

Frequency response:

G (jω) = K

jωT + 1

Amplitude response:

A (ω) = |G (jω)| = K√
(ωT )2 + 1

Phase response:

φ (ω) = − arctan ωT
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w

j

0°

-45°

-90°

A

w

K

1
T

-20dB/Decade

0 dB

Figure 2.20: Bode diagram of a PT1 with corner frequency ωe = 1/T .

ω

ω = 0

ω ∞=

j.Im(G)

Re(G)

K

G

ω = 1

T

A

ϕ

Figure 2.21: Nyquist plot of a PT1.

Step response in the frequency domain::

H (s) = G (s) · 1
s

= K

Ts + 1 ·
1
s

= · · ·PFD · · · = K

s
− KT

Ts + 1 = K

s
− K

s + 1
T

Step response in the time domain (compare table 2.1):

h (t) = L−1 {H (s)} = K −Ke− t
T = K

(
1− e− t

T

)

K

h(t)

tT

0.63K

(a) Stable

T<0

-T

K(1-e)

=

-1.7 K

h(t)

t

(b) Unstable

Figure 2.22: Step response of a PT1.
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u vK, T

Figure 2.23: Block diagram of a PT1.

2.9 PT2

Other names: Proportional control 2nd-order time constant, Second-order low pass,
Second-order oscillator
Example: Spring-mass oscillator (see section 2.1)
Differential equation in the time domain:

v̈ (t) + 2Dω0v̇ (t) + ω2
0v (t) = Kω2

0u (t)

Differential equation in the frequency domain:

V (s) ·
(
s2 + 2Dω0s + ω2

0

)
= Kω2

0U (s)

Transfer function:

G (s) = V (s)
U (s) = Kω2

0
s2 + 2Dω0s + ω2

0

Poles: see section 2.4
Zeroes: none
Frequency response:

G (jω) = Kω2
0

(ω2
0 − ω2) + 2Dω0ωj

Amplitude response:

A (ω) = |G (jω)| = Kω2
0√

(ω2
0 − ω2)2 + (2Dω0ω)2

Phase response:

φ (ω) = − arctan
(

2 Dω0ω

ω2
0 − ω2

)
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A

ω
ω0 10ω00.1ω0

D = 0

D = 0.2

D = 0.3

D = 0.5

D = 0.7

D = 1

D = 2

ω

ϕ

0°

-90°

-180°

K

K -

40 dB

Figure 2.24: Bode diagram of a PT2 with different damping values.
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j.Im(G)

Re(G)K

G

ω = 2ω0

ω = 1ω0

ω = 0.5ω0

-j.K

D = 0.2

D = 0.3

D = 0.5

D = 0.7

D = 1

D = 2

Figure 2.25: Nyquist plot of a PT2 with different damping values.

Step response (compare eqn. (2.1)):

h (t) = K

(
1− e−Dω0t

(
cos

(√
1−D2ω0t

)
+ D√

1−D2
sin

(√
1−D2ω0t

)))
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h(t)

t

K

D = 0.2

D = 0.3

D = 0.5

D = 0.7

D = 1

D = 2

Figure 2.26: Step responses of a PT2 with different damping values.

vu vK, ,Dw
0

Figure 2.27: Block diagram of a PT2.

2.10 I-Element

Other names: integrator, energy storage
Example: water level in a container

u

v

Figure 2.28: Example of an I-element.

Integral equation in the time domain:

v (t) = 1
TI

t∫
0

u (τ) dτ + v (t = 0)

Differential equation in the time domain:

v̇ (t) TI = u (t)

Differential equation in the frequency domain:
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V (s) s · TI = U (s)

Transfer function:

G (s) = V (s)
U (s) = 1

TI · s

(
= KI

s
with KI = 1

TI

)
Poles:

TIs = 0 ⇒ s1 = 0

Zeroes: none

sjω

σ

Figure 2.29: Poles (and zeros) of an I-element.

Frequency response:
G (jω) = 1

TI jω = −j 1
ωTI

= 1
ωTI

e−j π
2

Amplitude response:
A (ω) = |G (jω)| = 1

ωTI

Phase response:

φ (ω) = arctan
− 1

ωTI

0 = − arctan∞ = −π

2

A

w

-20 dB/Decade

TI

1
0 dB

j

w0°

-90°

(a) Bode diagram

ω

j.Im(G)

Re(G)

G

(b) Nyquist plot

Figure 2.30: I-element.
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Step response in the frequency domain:

H (s) = G (s) 1
s

= 1
TIs

1
s

= 1
TIs2

Step response in the time domain:

h (t) = L−1 {H (s)} = L−1
{ 1

TIs2

}
= t

TI

= 1
TI

t

t

h(t)

1

TI

(a) Step response

vu vT
I

(b) Block diagram

Figure 2.31: I-element.

2.11 D-Element

Other names: differentiator
Example: the angle of rotation of the speedometer needle is the derivative of the wheel
angle:

φspeedometer = φ̇wheel

Speedometer
jwheel jspeedometer

Figure 2.32: Example of a D-element.

Differential equation in the time domain:

v (t) = TDu̇ (t)

Differential equation in the frequency domain:

V (s) = TDsU (s)

Transfer function:

G (s) = V (s)
U (s) = TDs
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Poles: none
Zeroes:

TDs = 0 ⇒ s1 = 0

sjω

σ

Figure 2.33: (Poles and) zeroes of a D-element.

Frequency response:
G (jω) = jωTD = ωTDej π

2

Amplitude response:
A(ω) = |G(jω)| = ωTD

Phase response:
φ(ω) = arctan ωTD

0 = arctan∞ = π

2

A

w

20 dB/Dec

TD

1
0 dB

j

w0°

90°

(a) Bode diagram

ω

j.Im(G)

Re(G)

G

(b) Nyquist plot

Figure 2.34: D-element.

Step response in the frequency domain:

H (s) = G (s) 1
s

= TDs
1
s

= TD

Step response in the frequency domain (compare table 2.1):

h (t) = L−1 {H (s)} = L−1 {TD} = TDδ (t) (Dirac impulse)
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h(t)

t

(a) Step response

vu v
T

D

(b) Block diagram

Figure 2.35: D-element.

2.12 PID-Element

Other name: PID-controller

u vT
I

T
D

K

Figure 2.36: Parallel circuit of P-element, I-element and D-element.

Transfer function:

G (s) = K + 1
TIs

+ TDs = KTIs + 1 + TDTIs2

TIs

with:
TI = TN

K
and TD = TV K

G (s) =
K TN

K
s + 1 + TV K TN

K
s2

TN

K
s

= K
TNs + 1 + TV TNs2

TNs
= K

(
1 + 1

TNs
+ TV s

)

with:
TN : reset time and TV : rate time
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u vT
N

T
V

K

1

Figure 2.37: Hardware-oriented representation of a PID-element.

Poles:

s1 = 0

Zeroes:

TV TNs2 + TNs + 1 = 0 ⇒ · · · ⇒ s1,2 = ωE1,2

sjω

σωE1 ωE2

Figure 2.38: Poles and zeros of a PID-element.

Frequency response:

G (jω) = K + 1
jωTI

+ jωTD = K +
( −1

ωTI

+ ωTD

)
j

Intersection with the 0 degree axis:

φ = 0 ⇒ Im = 0 ⇒ −1
ωTI

+ ωTD = 0 ⇒ 1
ωTI

= ωTD ⇒

ωm =
√

1
TI · TD

=
√√√√ 1

TN

K
· TV K

=
√

1
TN · TV
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A

w

w

-20 dB/Dec

TI TD

1 1wE1

wm

20 dB/Dec

wE2

90°

0°

-90°

j

(a) Bode diagram

ωm

j.Im(G)

Re(G)

G

K

ω

(b) Nyquist plot

Figure 2.39: PID-element.

h(t)

tTN

K

2K

-TN

Slope
1
TI

K
TN

=

(a) Step response

vu vK,T ,T
I D

(b) Block diagram

Figure 2.40: PID-element

2.13 Dead Time

Other name: time delay
Example: conveyor belt

u
v

Figure 2.41: Conveyor belt as an example of a dead time.
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Transfer function:

G (s) = e−sTT

Poles: none
Zeroes: none
Frequency response:

G (jω) = e−jωTT

Amplitude response:

A (ω) = |G (jω)| = 1

Phase response:

φ (ω) = −ωTT

A

ω

0 dB

ϕ

ω
-57°

1

T
T

(a) Bode diagram

j.Im(G)

Re(G)

G

ω = 0

1

ω

j

(b) Nyquist plot

Figure 2.42: Dead time.

h(t)

tTT

1

(a) Step response

u vTT

(b) Block diagram

Figure 2.43: Dead time.

47



2.14 State Space Representation

Differential equation of a second-order system:

v̈ + 2Dω0v̇ + ω2
0v = Kω2

0u

Introduction of 2 state variables:

x1 = v (Displacement)
x2 = v̇ (Velocity)

First differential equation:
ẋ1 = x2

Second differential equation:

ẋ2 + 2Dω0x2 + ω2
0x1 = Kω2

0u

ẋ2 = −ω2
0x1 − 2Dω0x2 + Kω2

0u

Matrix notation: [
ẋ1
ẋ2

]
=
[

0 1
−ω2

0 −2Dω0

]
︸ ︷︷ ︸

A

[
x1
x2

]
+
[

0
Kω2

0

]
︸ ︷︷ ︸

B=b

u

Vector differential equation in state space:

ẋ = A · x + B · u

Vector output equation:

v = C · x + D · u

Output equation in explicit form:

v =
[
1 0

]
︸ ︷︷ ︸
C=cT

[
x1
x2

]
+
[
0
]

︸︷︷︸
D=d

u

2.14.1 Block Diagram of the State Space Representation

! “One integrator per state”

! “Model the differential equation at the input of the integrator”
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Kw
0

2

2Dw
0

u

w
0

2

vx
1

x
1

.
x

2

.
x

2

- -

Figure 2.44: Block diagram of a second-order oscillator.
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Chapter 3

Controller Design

3.1 Stability

3.1.1 BIBO-Stability (Bounded-Input Bounded-Output)

“Stable when a limited input signal leads to a limited output signal.”

3.1.1.1 Example: Step Response of an Integrator

h(t)

t

s(t)

Figure 3.1: Example: Step response of an integrator.

Result: integrator is not stable.

3.1.2 Asymptotic Stability

• stable if the impulse response asymptotically decays to zero.

• unstable if the impulse response approaches infinity

• marginally stable if the impulse response does not exceed a finite value
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3.1.2.1 Example: Impulse Response of an Integrator

g(t)

t

d(t)

Figure 3.2: Example: impulse response of an integrator

Result: integrator is marginally stable.

3.1.2.2 Example: Impulse Response of a Double Integrator

g(t)

t

d(t)

Figure 3.3: Example: impulse response of a double integrator.

Result: the double integrator is unstable.

3.1.3 Fundamental Stability Criterion

• stable if the transfer function only has poles in the left half plane

• unstable if at least one pole lies in the right half plane or if at least one multiple
pole lies on the imaginary axis

• marginally stable if no pole lies in the right half plane, there are no multiple poles
on the imaginary axis, but there is at least one simple pole on the imaginary axis

3.1.3.1 Example: General Second-Order System

G (s) = 1
s2 + a1s + a0

⇒ s1,2 = . . .
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s
jw

s

(a) Stable, no
oscillation

jw

s

s

(b) Unstable,
no oscillation

s
jw

s

(c) Unstable, no
oscillation

jw

s

s

(d) Unstable,
double integ-
rator

jw

s

s

(e) Stable, os-
cillation

jw

s

s

(f) Unstable,
oscillation

jw

s

s

(g) Margin-
ally stable,
undamped
oscillator

jw

s

s

(h) Marginally
stable, delayed
integrator

Figure 3.4: Pole distributions of stable and unstable systems.

3.2 Control Loop

GR GS

GM

-

w e y x

r

Figure 3.5: General control loop.

“From the output backwards to all inputs, or to the output itself”:

x = GS · y = GS ·GR · e = GS ·GR · (w − r) = GS ·GR · (w −GM · x)

Sort:

x · (1 + GS ·GR ·GM) = GS ·GR · w

Overall transfer function:

Gg = x

w
= GS ·GR

1 + GS ·GR ·GM

= GV

1 + G0
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Forward transfer function:

GV = GS ·GR

Open loop transfer function:

G0 = GS ·GR ·GM

3.2.1 Simple Control Loop Example

10s+1

1

s + 1

1

w x

-

K
R

Figure 3.6: Example of a simple control loop.

Overall transfer function:

Gg = GV

1 + G0
=

KR · 1
10s+1

1 + KR · 1
10s+1 ·

1
s+1

= KR (s + 1)
(10s + 1) (s + 1) + KR

Poles:
10s2 + 10s + s + 1 + KR = 0

Normal form:
s2 + 11

10s + 1 + KR

10 = 0

Two (real or complex conjugate) poles:

s1,2 = −11
20 ±

√(11
20

)2
− 1 + KR

10

For the special controller gain KR = 1:

s1,2 = −11
20 ±

√(11
20

)2
− 2

10

there are two real (stable) poles:

s1 = −0.2 and s2 = −0.87
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For the special controller gain KR = 10:

s1,2 = −11
20 ±

√(11
20

)2
− 11

10

there are two complex conjugate (stable) poles:

s1,2 = −0.55± 0.89j

0.2j

1.0j

-0.2-0.87

K =1R

K =10R

jω

σ

s

stabil

Figure 3.7: Poles of a simple control loop depending on the controller gain.

3.3 Nyquist Criterion

Preliminary consideration:

Microphone SpeakerAmplifier

“Feedback”? 

Figure 3.8: When does the acoustic loop become unstable?

Feedback only if :

1. Gain large enough (> 1) and

2. Positive feedback present (phase shift = n · 2π)

Control loop:
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GR GS

G
M

-

Figure 3.9: General control loop.

Open loop transfer function:
G0 = GR ·GS ·GM

Critical point:
A = |G0| = 1 and φ = ∠G0 = −π

3.3.1 Example

P-Controller
GR = KR

PT2 plant:
GS = 0.1

s2 + s + 1

PT1 sensor:
GM = 1

0.1s + 1

KR

1

0.1s + 1

0.1

s + s + 1
2

-

Figure 3.10: Block diagram of a control loop with P-controller, PT2-plant and PT1-sensor.

Open loop transfer function:

G0 = GR ·GS ·GM = KR ·
0.1

s2 + s + 1 ·
1

0.1s + 1
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AdB

0

-20

-40

-60

-80

-100

-120

1 10 100 1000

K = 40 dBR crit  

GS

wGM

GS

G0

G0

GM

0°

-90°

-180°

-270°

 (K = 1)R 

(K = 1)R 

w

j

Figure 3.11: Bode diagram of the open loop transfer function (G0).

Shift up to 0 dB (amplitude reserve):
KRcrit

≈ 40 dB = 100 (closed loop is marginally stable)

.j Im(G )0

Re(G )0

-0.01 0.1-1

-0.1j

K = 1R 

K = 100R crit 

w = 0

w=1

Critical
point

Figure 3.12: Nyquist plot of the open loop transfer function (G0).
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Simplified Nyquist criterion on the Nyquist curve of the open loop: Critical point (-1)
must be on the left, then the closed circle Gg is stable! (Requirement: stable open loop
plus a maximum of two integrators)

3.3.2 Two Methods to Examine the Stability of the Control
Loop

1. calculate the closed circle transfer function and apply the fundamental stability
criterion to the closed circle (poles of the closed circle in the left half plane)

2. calculate the open loop transfer function (G0 = GRGSGM) and apply the Nyquist
criterion

3.4 Controller Design

Three (sometimes contradictory) demands:

1. stability

2. speed

3. small control error

z

x

GS

w e
GR GS1 GS2

y

-

Figure 3.13: General control loop with disturbance and segmented plant.

Open loop transfer functions:

G0 = GR ·GS1 ·GS2

Reference transfer function:

Gg = x

w
= G0

1 + G0
(preferably → 1)

Disturbance transfer function:

57



Gz = x

z
= GS2

1 + G0
(preferably → 0)

Reference control error:

Gew = e

w
= 1

1 + G0
(preferably → 0)

Disturbance control error:

Gez = e

z
= − GS2

1 + G0
(preferably → 0)

3.4.1 Example: PT3

GS1 = 1
s + 1

GS2 = 2
s2 + s + 1

P-controller:

GR = KR

Open loop transfer function:

G0 = 2KR

(s + 1) (s2 + s + 1)

Closed loop transfer function:

Gg = G0

1 + G0
=

2KR

(s+1)(s2+s+1)

1 + 2KR

(s+1)(s2+s+1)
= 2KR

(s + 1) (s2 + s + 1) + 2KR

Good control accuracy:

KR →∞ ⇒ Gg → 1

But: if KR is too large ⇒ control loop might become unstable.
Steady-state control error transfer function:

Gew = 1
1 + G0

= 1
1 + 2KR

(s+1)(s2+s+1)
= (s + 1) (s2 + s + 1)

(s + 1) (s2 + s + 1) + 2KR

Small control error:
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KR →∞ ⇒ Gew → 0

But: see above
Limit theorem of the Laplace transform:

lim
t→∞

h (t) = lim
s→0

G (s)

Reference step:

w = s (t)

Steady-state control error:

lim
t→∞

e = e∞ = lim
s→0

Gew

e∞ = lim
s→0

(s + 1) (s2 + s + 1)
(s + 1) (s2 + s + 1) + 2KR

= 1
1 + 2KR

Increasing the controller gain reduces the steady-state control deviation:

KR ↑ ⇒ e∞ ↓

When using an I-controller:

GR = 1
TI · s

Open loop transfer function:

G0 = 2
TIs (s + 1) (s2 + s + 1)

Steady-state control error transfer function:

Gew = 1
1 + G0

= 1
1 + 2

TIs(s+1)(s2+s+1)
= TIs (s + 1) (s2 + s + 1)

TIs (s + 1) (s2 + s + 1) + 2

Steady-state control error:

e∞ = lim
s→0

Gew = TI0 (0 + 1) (02 + 0 + 1)
TI0 (0 + 1) (02 + 0 + 1) + 2 = 0

2 = 0

No steady-state control error with I-controller (disadvantage: slower, destabilization)
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3.5 Quality Criteria

h(t)

tt50 tan tmax te

100%

50%

0%

Tu Tg

emax 2einflection point
tangent

Figure 3.14: Reference step response.

emax maximum overshoot

tmax emax occurs.

Tu delay time (inflection point tangent ∩ 0 %)

Tg compensation time (inflection point tangent ∩ 0 % ∩ 100 %)

tan response time (curve ∩ 100 %)

tε the magnitude of the control error stays less than ε (z. B. t3 %)

h(t)

ttε

emax

2ε

Figure 3.15: Disturbance step response.

Cost function:
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K = K1 · tan + K2 · tε + K3 · emax + K4 · · · = minimum ↓

⇒ Ki arbitrarily chosen ⇒ compromise

3.5.1 Integral Criteria

I = min ↓

Integral Error (IE):

I =
∞∫

0

e (t) · dt (e > 0)

Integral Absolute Error (IAE):

I =
∞∫

0

|e (t)| · dt (inefficient)

Integral Square Error (ISE):

I =
∞∫

0

e2 (t) · dt (analytical calculation)

Integral Time Square Error (ITSE):

I =
∞∫

0

e2 (t) · t · dt (duration of the control error)

Control effort:

I =
∞∫

0

(
e2 (t) + α · y2 (t)

)
· dt (α: subjective weighting factor)
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3.6 Controller Optimisation with Simulation

Optimiser
(Engineer)

e GR GS

y

-

2
(e)

2
(y)

a

Figure 3.16: Controller optimisation.

3.7 Control Loop Tuning Rules

PID-controller (compare section 2.12)

P basic control

I steady-state accuracy (slow)

D speed (I compensation)

Two proven methods:

3.7.1 Ziegler and Nichols (Margin of Stability)

Turn up the P-controller until the control loop oscillates stationary:

→ KRkrit

Measure the period of the oscillation:

→ Tkrit

62



Table 3.1: Controller Gain, Reset Time, and Rate Time Dependence on Oscillation Test
Parameters

Controller Controller gain KR Reset time TN Rate time TV

P 0.5 KRkrit
- -

PI 0.45 KRkrit
0.85 Tkrit -

PID 0.6 KRkrit
0.5 Tkrit 0.12 Tkrit

3.7.2 Chien, Hrones, and Reswick (Step Response)

KS

h (t)S

tTu
Tg

Figure 3.17: Step response of the plant.

• inflection point tangent → delay time Tu, compensation time Tg

• applicable if Tg/Tu > 3

Definition of an auxiliary variable:

KH = Tg

KSTu
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Table 3.2: Controller Gain, Reset Time, and Rate Time Dependence on Steady-State
Amplitude, Delay Time, and Compensation Time

Controller Optimized for Overshoot KR TN TV

P disturbance 0 % 0.3 KH - -

20 % 0.7 KH - -

reference 0 % 0.3 KH - -

20 % 0.7 KH - -

PI disturbance 0 % 0.6 KH 4.0 Tu -

20 % 0.7 KH 2.3 Tu -

reference 0 % 0.35 KH 1.2 Tg -

20 % 0.6 KH 1.0 Tg -

PID disturbance 0 % 0.95 KH 2.4 Tu 0.42 Tu

20 % 1.2 KH 2.0 Tu 0.42 Tu

reference 0 % 0.6 KH 1.0 Tg 0.5 Tu

20 % 0.95 KH 1.35 Tg 0.47 Tu
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3.8 Disturbance Feedforward

G’St

w xe
GR GS

Gz

GSt

y

-

z

Figure 3.18: Disturbance feedforward.

Concept: compensation for the disturbance variable z if it can be measured. If possible,
the disturbance variable should have no influence on the output variable x:
Transfer function from z to x:

Gxz = Gz + GStGS

1 + GRGS

!= 0

Numerator of Gxz must disappear:

Gz + GStGS = 0

Condition for disturbance feedforward transfer function:

GSt = −Gz

GS

Problem: GSt cannot always be implemented exactly
⇒ at least stationary disturbance compensation (s = 0)
Alternative: signal injection before the controller:
New transfer function from z to x:

Gxz = Gz + G′
StGRGS

1 + GRGS

!= 0

Numerator must be zero:
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Gz + G′
StGRGS = 0

Compensation condition:

G′
St = − Gz

GRGS

Advantage: no actuator energy necessary
Disadvantage: signal has to go through the controller

3.9 Open Loop Control (Feedforward)

w x
GV GS

y

z

Figure 3.19: Pure open loop control.

Requirement:
x = w

Ideal:
GV = 1

GS

e. g.:
GS = 2

3s + 1 ⇒ GV = 3s + 1
2

Problems:

1. GS is not exactly known.

2. GS is not exactly invertible (dead time, pure integrator, . . . ).

3. disturbances are not detected.

Steady-state open loop control GVst meets the requirement x = w at least after the
transient response (t→∞ ⇒ s = 0):
Example above:

GVst = lim
s→0

3s + 1
2 = 3 · 0 + 1

2 = 0.5

66



3.9.1 Combination with Closed Loop Control

w x

GV

GR GS

yV

yR

z

ye

Figure 3.20: Combination of open loop and closed loop control.

Method:

1. design the open loop controller GV for best possible inversion.

2. design the closed loop controller GR (just has to compensate the inadequacies of
the open loop controller).

3.10 Digital (Discrete-Time) Control

A

-

Process 
controller

Plant

D

D

A

T TT

w(t)

e(kT)

e(t)

e(t) y(kT)

y(t) x(t)

y(t)

Digital
Controller

Figure 3.21: Digital control (T : sampling time).
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e(t)

t

e(kT)

e

T

(a) Sampled input variable plot

y(t)

t

y(kT)

y

T

(b) Output variable is hold

Figure 3.22: Sampling with digital control.

3.10.1 z-Transformation

The transfer function in the s-domain is given:

G (s) = V (s)
U (s)

We are looking for the transfer function in the z-domain:

G (z) = v (kT )
u (kT )

and derived from this, the difference equation:

vk+1 = f (vk, vk−1, . . . , uk+1, uk, uk−1, . . . )

3.10.2 Approximations

Rectangle rule:

s ≈ z − 1
T · z

Tustin’s rule:

s ≈ 2
T
· z − 1

z + 1

3.10.3 Example: Digital Low Pass

Transfer function in the s-domain:

G (s) = 2
5s + 1

Sampling time:
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T = 0.1

Using Tustin’s rule:

s ≈ 20 · z − 1
z + 1

Transfer function in the z-domain:

G (z) = 2
5 · 20 · z−1

z+1 + 1 = 2 (z + 1)
100 (z − 1) + z + 1 = 2z + 2

101z − 99

Quotient of output and input variable:

G (z) = vk

uk

= 2z + 2
101z − 99

Multiply crosswise:

vk (101z − 99) = uk (2z + 2)

“Multiplication by z means shifting in the positive time direction”:

vk · z =̂ vk+1

Difference equation:

101vk+1 − 99vk = 2uk+1 + 2uk

Solve for “new output variable”:

vk+1 = 99vk + 2uk+1 + 2uk

101

T

T

2
1

2

99

u
k+1

u
k+1

u
k

v
k+1

v
k+1

v
k

101

Figure 3.23: Discrete implementation of a digital low pass filter.
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Part II

Flight Control
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Chapter 4

Introduction

4.1 Aviation Terminology

• All symbols are consistent with European standards [1] - [2] (with extensions: VA,
ΩK)

• All axis systems are right-handed (i.e., use the ‘right hand rule’).

• A summary of the nomenclature and self-test is available [3]

• Many illustrations are reproduced (with the kind permission of the author) from
[4].

4.1.1 Variables of Motion

There are define several different orthogonal axis systems for use in aerospace. Figure 4.1
indicates positive directions and moments with axes centered on an aircraft.

z, Z, w

y, Y, v

x, X, u

L, p

M, q

N, r

Figure 4.1: Positive directions and moments according to [1].
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Position vector (direction, distance):

s =

x
y
z

 towards the front
towards the right

towards the bottom

Force vector:

R =

X
Y
Z


Moment vector:

Q =

L
M
N


Velocity vector:

V =

u
v
w


Angular velocity vector:

Ω =

p
q
r

 roll
pitch
yaw

Attitude vector (Euler angle vector):

Φ =

Φ
Θ
Ψ



4.1.2 Indices

The following indices are used to denote different types of force, moment or velocity:

A aerodynamic

K flight-path

W wind

F thrust

Lower case subscripts are used to denote different coordinate systems:
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f body-fixed axis system

a aerodynamic axis system

k flight-path axis system

g Earth-fixed (geodetic) axis system

4.1.2.1 Axis System Examples

Some examples of forces and moments in different coordinate systems:
Resulting aerodynamic force in the aerodynamic axis system: RA

a

Resultant aerodynamic moment in the flight-path axis system: QA
k

Thrust force in the body-fixed axis system: F F
f

Thrust moment: QF

Weight force in the geodetic axis system: Gg

Gravitational acceleration vector (acceleration due to gravity) in the body-fixed axis sys-
tem: gf

4.1.3 Velocities

VW

VA VK

Figure 4.2: Aerodynamic velocity, flight-path velocity, and wind velocity.
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Flight-path velocity VK Relative velocity of the aircraft with respect to the Earth

Aerodynamic velocity VA Relative velocity of the aircraft with respect to the air

Wind velocity VW Relative velocity of the air with respect to the Earth

Relationship between flight-path velocity, aerodynamic velocity and wind velocity vectors:

VK = VA + VW

Equivalent relationship for angular velocity vectors:

ΩK = ΩA + ΩW

4.1.4 Control Variables

xf

zf

-h
qK

dh

Figure 4.3: A positive stick deflection (pull) leads to a negative elevator deflection and
thus to a positive pitch moment.

yf

zf

-x

dx

pK

dx

Figure 4.4: A positive stick deflection (to the right) leads to a negative aileron deflection
(right aileron up) and thus to a positive roll moment.
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xf

-dz

-zrK

yf

Figure 4.5: A negative pedal angle (right pedal depressed) leads to a negative rudder
deflection and thus to a positive yaw moment.

4.2 Coordinate Transformation

The general three-dimensional vector can be described in any axis system.

V =

u
v
w


For example:

xa

ya

za

1V

(a) Vector V , represented
in the a axis system

xb

yb

zb1V

(b) Same vector V ,
represented in the b
axis system

Figure 4.6: Coordinate transformation.
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Vector V , expressed in the a axis system:

Va =

u
v
w


a

=

ua

va

wa

 =

1
0
0


The b axis system is created by a 90° rotation of the a axis system about the ya axis. The
vector V is not rotated in the process.
Same vector V , expressed in the b axis system:

Vb =

u
v
w


b

=

ub

vb

wb

 =

0
0
1


The vector (expressed in the new axis system) now has different coordinates; however, it
is still the same vector.
It is often useful to express aerodynamic quantities in different axis systems, to simplify
analysis or communication.

4.2.1 Axis Systems

Figure 4.7 is a schematic of the various axis systems used in aviation, and the transform-
ations that relate them to each other.

gW gag

q

f

cW cac

-bK -b

bW -b

aK a a

-aW

mK

ma

-mW

y

g

Wind Flight-path Aerodyn. Experim.

Earth

Aircraftf

x  : VWw

y  : x , yg gw

x  : VKk

y  : x , yg gk

x  : VAa

z  : x , zf fa

y  = ye f

z  = zae

Mwg Mkg Mag

Mfk Mfa Mfe

Mfg Mka Mea
w k a e

VK

VW

VA

Figure 4.7: Aviation axis systems (coordinate systems) and transformation matrices (ac-
cording to [1]).

• The geodetic (Earth-fixed) axis system (index: g) is defined by its zg axis pointing
in the direction of gravity. The xg axis is perpendicular to the zg axis in the Earth’s
horizontal plane and is often assumed to be in the north direction. The yg axis
forms (as in all described axis systems) a right-handed axis system with the other
two axes and therefore also lies in the Earth’s horizontal plane.

76



• The body-fixed axis system (index: f or no index) describes the attitude of the
aircraft in space. The xf axis points “forwards” (usually in the plane of symmetry
from the centre of gravity to the nose of the aircraft), the yf axis points “to the
right” (starboard) and the zf axis points “downwards”.

• The aerodynamic axis system (index: a) is defined by its xa axis, which points in
the direction of aerodynamic velocity vector VA. Since the axis system is not yet
clearly defined by the definition of one axis (it could still rotate about its xa axis),
the za axis is defined in the plane of aircraft symmetry (xf -zf plane). This means
that the yf axis also lies in the xa-ya plane (cf. figure ??).

• The flight-path axis system (index: k) is defined analogously to the aerodynamic
axis system: The xk axis points in the direction of the flight-path velocity vector
VK . As a second definition, the yk axis is usually placed in the Earth’s horizontal
plane (xg-yg plane) (cf. figure 4.9).

4.2.2 Rotation from Geodetic to Body-fixed Axes

Figure 4.8 shows the relationship between the geodetic and body-fixed coordinate systems.

xg

x , yg g

x , zf g

y , zf f

k2

k1

k3

xf

yg

yf

zg

zf

Φ

Φ

Θ

Θ

Ψ
Ψ

Figure 4.8: Euler angle rotation from the geodetic to the body-fixed axis system [5]
(according to [1]).

• The yaw angle (heading, azimuth angle) Ψ rotates in the xg-yg plane about the zg

axis. In doing so, the xg axis is transformed into the nodal axis k1 and the yg axis
into the nodal axis k2. Main value range:: −π < Ψ ≤ π
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• The pitch angle (inclination angle) Θ rotates in the xf -zg plane about the k2 axis.
In the process, the k1 axis is transformed into the xf axis and the zg axis into the
nodal axis k3. Main value range: −π

2 ≤ Θ ≤ π
2

• The roll angle (bank angle) Φ rotates in the yf -zf plane about the xf axis. In doing
so, the k2 axis is transformed into the yf axis and the k3 axis into the zf axis. Main
value range: −π < Φ ≤ π

4.2.3 Rotation from the geodetic to the flight-path axis system

xg

x , yg g

x , zk k

yk

kk

zk

xk

yg

zg

γ

γ

χ χ

Figure 4.9: Rotation from the geodetic to the flight-path axis system [5].

• The flight-path azimuth angle χ rotates in the xg-yg plane about the zg axis. In
doing so, the xg axis is transformed into the nodal axis kk and the yg axis into the
yk axis. Main value range: −π < χ ≤ π

• The flight-path angle (angle of climb, flight-path inclination angle) γ rotates in the
xk-zk plane about the yk axis. In the process, the kk axis is transformed into the xk

axis and the zg axis into the zk axis. Main value range: −π
2 ≤ γ ≤ π

2

• A rotation about the xk axis (as with the Euler angles with Φ) does not take place,
since the yk axis lies in the Earth’s horizontal plane (xg-yg plane) by definition.
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4.2.4 Rotation from the aerodynamic to the body-fixed axis sys-
tem

xa

xf

xe

x , ya a

zf

yf

ya

β

β

za

α

α

Figure 4.10: Rotation from the aerodynamic to the body-fixed axis system [5]

• The side-slip angle β rotates in the xa-ya plane about the za axis. By rotating
in a negative direction, i. e. by “minus beta”, the xa axis is transformed into the
intermediate xe axis (experimental axis system) and the ya axis into the yf axis.
Main value range: −π

2 ≤ β ≤ π
2

• The angle of attack α rotates in the xf -zf plane about the yf axis. In the process,
the xe axis is transformed into the xf axis and the za axis into the zf axis. Main
value range: −π < α ≤ π

• A rotation about the xf axis (as with the Euler angles with Φ) does not take place,
since the za axis lies in the plane of aircraft symmetry (xf -zf plane) by definition.

4.2.5 Transformation matrices

Rotation with angle wz about a z axis:

Mz =

 cos wz sin wz 0
− sin wz cos wz 0

0 0 1


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Rotation with angle wy about a y axis:

My =

cos wy 0 − sin wy

0 1 0
sin wy 0 cos wy


Rotation with angle wx about an x axis:

Mx =

1 0 0
0 cos wx sin wx

0 − sin wx cos wx


Total transformation matrix with a rotation sequence wz → wy → wx (“read from the
right”):

Mges = Mx ·My ·Mz

=

1 0 0
0 cos wx sin wx

0 − sin wx cos wx


cos wy 0 − sin wy

0 1 0
sin wy 0 cos wy


 cos wz sin wz 0
− sin wz cos wz 0

0 0 1


Transformation from the geodetic to the body-fixed axis system:

Mfg =

1 0 0
0 cos Φ sin Φ
0 − sin Φ cos Φ


cos Θ 0 − sin Θ

0 1 0
sin Θ 0 cos Θ


 cos Ψ sin Ψ 0
− sin Ψ cos Ψ 0

0 0 1

 (4.1)

=

 cos Θ cos Ψ cos Θ sin Ψ − sin Θ
sin Φ sin Θ cos Ψ − cos Φ sin Ψ sin Φ sin Θ sin Ψ + cos Φ cos Ψ sin Φ cos Θ
cos Φ sin Θ cos Ψ + sin Φ sin Ψ cos Φ sin Θ sin Ψ − sin Φ cos Ψ cos Φ cos Θ


Transformation from the aerodynamic to the body-fixed axis system:

Mfa =

cos α 0 − sin α
0 1 0

sin α 0 cos α


 cos(−β) sin(−β) 0
− sin(−β) cos(−β) 0

0 0 1



=

cos α 0 − sin α
0 1 0

sin α 0 cos α


cos β − sin β 0

sin β cos β 0
0 0 1



=

cos α cos β − cos α sin β − sin α
sin β cos β 0

sin α cos β − sin α sin β cos α


Transformation from the geodetic to the flight-path axis system:
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Mkg =

cos γ 0 − sin γ
0 1 0

sin γ 0 cos γ


 cos χ sin χ 0
− sin χ cos χ 0

0 0 1



=

cos γ cos χ cos γ sin χ − sin γ
− sin χ cos χ 0

sin γ cos χ sin γ sin χ cos γ



4.2.5.1 Transformation direction reversal

Two ways to generate the inverse transformation (reverse transformation):

1. by reversing the order of the single transformations and negative angles:

Mgk =

 cos(−χ) sin(−χ) 0
− sin(−χ) cos(−χ) 0

0 0 1


cos(−γ) 0 − sin(−γ)

0 1 0
sin(−γ) 0 cos(−γ)



=

cos χ − sin χ 0
sin χ cos χ 0

0 0 1


 cos γ 0 sin γ

0 1 0
− sin γ 0 cos γ



=

cos χ cos γ − sin χ cos χ sin γ
sin χ cos γ cos χ sin χ sin γ
− sin γ 0 cos γ


2. by inverting the transformation matrix. With the rotational transformations used,

inverting is simplified to transposing:

Mgk = M−1
kg = MT

kg

=

cos γ cos χ cos γ sin χ − sin γ
− sin χ cos χ 0

sin γ cos χ sin γ sin χ cos γ


T

=

cos γ cos χ − sin χ sin γ cos χ
cos γ sin χ cos χ sin γ sin χ
− sin γ 0 cos γ



4.2.5.2 Coordinate Transform Example

The weight vector has only a z component in the geodetic axis system, namely its mag-
nitude:

Gg =

 0
0

mg


After the transformation into the body-fixed axis system, the weight vector is dense (fully
occupied):
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Gf = MfgGg =

· · · · · · − sin Θ
· · · · · · sin Φ cos Θ
· · · · · · cos Φ cos Θ


 0

0
mg



=

 − sin Θ ·mg
sin Φ cos Θ ·mg
cos Φ cos Θ ·mg

 =

 − sin Θ
sin Φ cos Θ
cos Φ cos Θ

 ·mg

4.2.6 Conversion between Cartesian and Spherical Coordinates

4.2.6.1 Aerodynamic Velocity Conversion

The airspeed vector VA can be expressed particularly simply in the aerodynamic axis
system due to its definition. It has only a uA component there:

VAa =

uA

vA

wA


a

=

VA

0
0


After the transformation into the body-fixed axis system, the relations between the
Cartesian and the spherical coordinates of the aerodynamic velocity vector are obtained:

VAf =

uA

vA

wA


f︸ ︷︷ ︸

Cartesian

= MfaVAa =

cos α cos β · · · · · ·
sin β · · · · · ·

sin α cos β · · · · · ·


VA

0
0

 =

VA cos α cos β
VA sin β

VA sin α cos β


︸ ︷︷ ︸

spherical

Check the identity of the norms of both representations:

|VA| =
√

u2
Af + v2

Af + w2
Af

=
√

V 2
A cos2 α cos2 β + V 2

A sin2 β + V 2
A sin2 α cos2 β

=
√√√√V 2

A

(
cos2 α + sin2 α

)
︸ ︷︷ ︸

1

cos2 β + V 2
A sin2 β

=
√√√√V 2

A

(
cos2 β + sin2 β

)
︸ ︷︷ ︸

1

= VA q. e. d

The ratio of the two Cartesian coordinates is:

wAf

uAf

= VA sin α cos β

VA cos α cos β
= tan α

Therefore, the solution for the angle of attack becomes:
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α = arctan
(

wAf

uAf

)

Second Cartesian coordinate:

vAf = VA · sin β

The solution for the side-slip angle is:

β = arcsin
(

vAf

VA

)

4.2.6.2 Conversion of the Flight-Path Velocity

The flight-path velocity vector VK can be expressed particularly simply in the flight-path
axis system due to its definition. It has only a uK component there:

VKk =

uK

vK

wK


k

=

VK

0
0


After the transformation into the geodetic axis system, the relationships between the
Cartesian and the spherical coordinates of the flight-path velocity vector are obtained:

VKg =

uK

vK

wK


g︸ ︷︷ ︸

Cartesian

= MgkVKk =

cos γ cos χ · · · · · ·
cos γ sin χ · · · · · ·
− sin γ · · · · · ·


VK

0
0

 =

VK cos γ cos χ
VK cos γ sin χ
−VK sin γ


︸ ︷︷ ︸

spherical

Ratio of two Cartesian coordinates:

vKg

uKg

= VK cos γ sin χ

VK cos γ cos χ
= tan χ

Solution for the flight-path azimuth:

χ = arctan
(

vKg

uKg

)

Third Cartesian coordinate:
wKg = −VK sin γ

Solution for the angle of climb:

γ = − arcsin
(

wKg

VK

)
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4.2.6.3 Summary of the Conversions

Spherical → Cartesian:

uAf = VA cos α cos β

vAf = VA sin β

wAf = VA sin α cos β

uKg = VK cos γ cos χ

vKg = VK cos γ sin χ

wKg = −VK sin γ

Cartesian → spherical:

VA =
√

u2
Af + v2

Af + w2
Af

α = arctan
(

wAf

uAf

)

β = arcsin
(

vAf

VA

)
VK =

√
u2

Kg + v2
Kg + w2

Kg

γ = − arcsin
(

wKg

VK

)
χ = arctan

(
vKg

uKg

)
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4.2.7 Representation of Angles and Vectors

xa
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Q
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iF
F

AA = -Za

F = Y = c = b = 0

aK

gA AW = -Xa

Figure 4.11: Angles and vectors in the x-z plane.
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Figure 4.12: Angles and vectors in the x-y plane
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Figure 4.13: Angles and vectors in the y-z plane
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Chapter 5

Subsystems

5.1 Aerodynamics

The relative velocity VA between the aircraft and the air with density ρ creates dynamic
pressure:

q̄ = ρ

2V 2
A

The product of dynamic pressure q̄ and reference wing area S is called the aerodynamic
force unit E:

E = q̄ · S

The aerodynamic forces are the product of the aerodynamic force unit with the dimen-
sionless coefficients in each direction:
Lift:

A = E · CA

Drag:
W = E · CW

Side force:
Q = E · CQ

For the moments, a reference length is also required for dimensional reasons. Usually, the
mean aerodynamic chord lµ is used today for all moments:
Roll moment:

L = E · lµ · Cl

Pitch moment:
M = E · lµ · Cm

Yaw moment:
N = E · lµ · Cn
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5.1.1 Coefficients

The coefficients are non-linear functions of the respective aerodynamic parameters.

5.1.1.1 Coefficients of the Longitudinal Motion

Lift coefficient:
CA = CA (α, η, Ma, q, α̇, . . .)

Drag coefficient:
CW = CW (α, η, Ma, . . .)

Pitch moment coefficient:

Cm = Cm (α, η, Ma, q, α̇, . . .)

Alternative modelling of the drag coefficient via the drag polar:

C
A

C
W

C
W0

Figure 5.1: Drag polar.

Drag coefficient:
CW = CW 0 + k · C2

A,

where CW 0 is the zero drag (no lift) and k · C2
A is the lift induced drag.

5.1.1.2 Coefficients of Lateral Motion

Side force coefficient:
CQ = CQ (β, p, r, ξ, ζ, . . .)

Roll moment coefficient:
Cl = Cl (β, p, r, ξ, ζ, . . .)

Yaw moment coefficient:
Cn = Cn (β, p, r, ξ, ζ, . . .)
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5.1.2 Linear Aerodynamic Derivatives

An aerodynamic derivative is the partial derivative of an aerodynamic coefficient with
respect to an aerodynamic influence quantity.

5.1.2.1 Example: Lift Characteristic

α

C A

α(C )A = 0

C = CA0 A α( )= 0

CAmax

∂CA

∂α
CAα =

Figure 5.2: Lift characteristic (lift coefficient over angle of attack).

Within a working range (in the vicinity of a working point) a linear dependence of the lift
coefficient on the angle of attack is assumed. There, the slope of the characteristic curve
is constant and corresponds to the derivative CAα:
Lift due to angle of attack:

CAα = ∂CA

∂α

Analogously, further lift derivatives are defined:
Lift due to elevator deflection:

CAη = ∂CA

∂η

Lift due to the Mach number::

CAMa = ∂CA

∂Ma

Since the derivatives (just like the coefficients) are dimensionless, an angular speed (unit: s−1)
must first be rendered dimensionless (normalised) with a reference time constant before
it can be partially derived. Usually, the time constant:

TN = lµ
VA

is used for normalisation:
Normalised aerodynamic pitch speed:
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q∗
A = TN · qA = lµ

VA

· qA

The corresponding derivative is obtained by partial derivation with respect to the norm-
alised angular speed:
Lift due to pitch speed:

CAq = ∂CA

∂ (q∗
A)

The total lift coefficient, within the framework of the described linear derivative aerody-
namics, is composed of the linear combination of the individual influences:
Total lift coefficient:

CA = CA0 + CAα · α + CAη · η + CAMa ·Ma + CAq · q∗
A + . . .

The same applies to the other force and moment coefficients:
Total pitch moment coefficient:

Cm = Cm0 + Cmα · α + Cmη · η + CmMa ·Ma + Cmq · q∗
A + . . .

Total side force coefficient:

CQ = CQβ · β + CQp · p∗
A + CQr · r∗

A + CQξ · ξ + CQζ · ζ + . . .

Total roll moment coefficient:

Cl = Clβ · β + Clp · p∗
A + Clr · r∗

A + Clξ · ξ + Clζ · ζ + . . .

Total yaw moment coefficient:

Cn = Cnβ · β + Cnp · p∗
A + Cnr · r∗

A + Cnξ · ξ + Cnζ · ζ + . . .

The individual derivatives are usually designated according to their cause-effect relation-
ship:
Pitch damping (damping of the pitch motion):

Cmq

Yaw damping (damping of the yaw motion):

Cnr

Wind vane stability (alignment “into the wind”):
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Cnβ

Side-slip roll moment (roll moment due to side-slip):

Clβ

Yaw side force (“Side force due to yaw”):

CQr

etc.

5.2 Engine

The thrust vector (maximum thrust) is dependent on

• Air inlet and outlet velocity vectors (thrust vector angle, angle of attack, side-slip
angle)

• Air density (altitude)

• Mach number

• . . .

Low pass behaviour:

TF · Ḟ + F = Fc

with

TF engine time constant

F thrust

Fc reference thrust

The thrust moment vector is given by:

QF = rF × FF =

rx

ry

rz

×
Fx

Fy

Fz


with

FF thrust vector

rF thrust vector application point (distance of the engine from the reference point)

QF thrust moment vector
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5.3 Actuator Dynamics

5.3.1 Bathtub Experiment

Suppose there was a board halfway up your bathtub with a plastic duck floating on the
water underneath.

(a) Drain closed, inlet opened, wa-
ter level rises, duck rises.

(b) Drain opened, inlet closed, wa-
ter level drops, duck does not sink.

Figure 5.3: Bathtub experiment.

• As long as the inlet is opened, the outlet is closed, and the duck is not yet touching
the board, the duck will rise together with the rising water level.

• As soon as the duck hits the board, it stops at a constant height. The water level
continues to rise regardless.

• When the inlet is closed and the outlet is opened, the water level begins to sink.
The duck, however, does not sink yet.

• Only when the sinking water level reaches the duck under the board can it sink
together with the water.

5.3.2 Generalisation

Bathtub energy storage, integrator, dynamic system

Inlet or outlet input variable u of the integrator

Water level energy content, state, output variable v of the integrator

Board saturation vb of the output variable
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(a) Block diagram
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(b) Time plots

Figure 5.4: Subsequently limited integrator.

Problem: If the output variable of a dynamic system is limited, it can happen that
the internal state variables “run full” and the reaction of the system only becomes
visible after an undesired time delay TT , although the limited output signal should
actually react immediately.

Solution: Additionally stop the corresponding state variables when the output variable
runs into its saturation. In the example: Stop the integrator by explicitly setting
its input variable to zero: Close the inlet.

Notice:�
�

�
�Never thoughtlessly limit the output of a dynamic system.

5.4 Wind

The total wind can be composed of three parts (stationary wind, urbulence (gusts) and
wind shear):

VW = VW Stat + VW T urb + VW Shear

Wind shear is particularly relevant during the landing phase of an aircraft:
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Figure 5.5: Loss of a passenger aircraft at J. F. Kennedy Airport on 24. 6. 1975.

5.4.1 Turbulence

Noise
generator

Low-
pass

White 
noise

Pink
noise

Figure 5.6: White noise: equal power density for all frequencies. Pink noise: high fre-
quencies have lower power density.

5.4.2 Wind Gradients

5.4.2.1 The Nabla Operator

The Nabla operator (partial derivative operator) is given by:

∇ =


∂

∂x
∂

∂y
∂
∂z

 =
[

∂
∂x

∂
∂y

∂
∂z

]T

Applying the Nabla operator to a scalar field p yields a vector (the gradient):
Gradient:

∇p =


∂

∂x
∂

∂y
∂
∂z

 p =


∂p
∂x
∂p
∂y
∂p
∂z

 =

px

py

pz

 = grad (p)
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The application of the Nabla operator to a vector field V yields – depending on the type
of the product – a scalar (divergence), a vector (rotation) or a matrix (Jacobian matrix):
Divergence (scalar product, inner product):

∇ · V =


∂

∂x
∂

∂y
∂
∂z

V =


∂

∂x
∂

∂y
∂
∂z


u

v
w

 = ∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= ux + vy + wz = div (V )

Rotation (cross product):

∇× V =


∂

∂x
∂

∂y
∂
∂z

× V =


∂

∂x
∂

∂y
∂
∂z

×
u

v
w

 =


∂w
∂y
− ∂v

∂z
∂u
∂z
− ∂w

∂x
∂v
∂x
− ∂u

∂y

 =

wy − vz

uz − wx

vx − uy

 = rot (V )

Jacobian (dyadic product, outer product):

∇ · V T =


∂

∂x
∂

∂y
∂
∂z

V T =


∂

∂x
∂

∂y
∂
∂z


u

v
w


T

=


∂

∂x
∂

∂y
∂
∂z

 [u v w
]

=


∂u
∂x

∂v
∂x

∂w
∂x

∂u
∂y

∂v
∂y

∂w
∂y

∂u
∂z

∂v
∂z

∂w
∂z

 =

ux vx wx

uy vy wy

uz vz wz


Source-freeness:

div (V ) = ux + vy + wz = 0

Rotation-freeness (irrotationality):

rot (V ) =

wy − vz

uz − wx

vx − uy

 =

0
0
0


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5.4.2.2 Wind Gradients

yg

xg

uWx

(a) uW x (wind in x direction
increasing in x direction)

yg

xg

vWy

(b) vW y (wind in y direction
increasing in y direction)

yg

zg

wWz

(c) wW z (wind in z direction
increasing in z direction)

Figure 5.7: Wind gradients in each Cartesian direction.

yg

xg

uWx

vWy

Figure 5.8: Horizontal, source-free wind field (uW x = −vW y).

96



yg

xg

uWy

vWx

Figure 5.9: Horizontal, rotation-free wind field (uW y = vW x).

yg

xg

uWy

vWx

Figure 5.10: Horizontal, rotating wind field (uW y = −vW x).
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Description of the wind component caused by wind shear using the Jacobian matrix (shear
tensor):

VW Shear =

uW

vW

wW


Shear

=
(
∇ · V T

W

)T
· s =

uW x vW x wW x

uW y vW y wW y

uW z vW z wW z


T

s

=

uW x uW y uW z

vW x vW y vW z

wW x wW y wW z


x

y
z

 =

 uW x · x + uW y · y + uW z · z
vW x · x + vW y · y + vW z · z

wW x · x + wW y · y + wW z · z



5.4.3 Flight in a Stationary Wind Field

The flight path velocity of an aircraft is a function of the surrounding wind velocity. At
every point:

VK = VA + VW (vector sum)

Consider a simply manoeuvre in a steady wind field, where the aircraft flies a steady,
horizontal turn without side-slip angle relative to the air. All aerodynamic variables
(angle of attack, lift, . . . ) are constant.

1

xg

0 1 2 yg 3

0

-1

Vw

Vw

Vw

Vw
VwVK

VK

VA

VA

A

B

C

D

E

VA VK

VA VK

Figure 5.11: Flight in a stationary wind field (trochoid, cycloid).

The flight-path velocity vector is always oriented tangentially to the trajectory.

Point A The “reversal point” of the “circle” with respect to the air, at xg = 0. The
aerodynamic velocity vector points exactly in the xg direction.

Point B the aircraft flies exactly in negative yg direction, against the wind. The mag-
nitude (norm) of the flight-path velocity vector (flight-path speed) is minimum.
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Point C the aircraft flies exactly in positive yg direction, with the wind. The magnitude
of the flight-path velocity vector is maximum.

Point D reversal point of the trochoid with respect to the Earth. The flight-path velocity
vector points exactly in the xg direction.

5.4.3.1 Flight-path Speed and Energy

Between points B and C, the magnitude of the flight-path velocity vector increases; the
aircraft thus accelerates relative to the Earth, which is assumed to be at rest. Between C
and E the aircraft decelerates.
With respect to the air, the aircraft flies a circle. The aerodynamic velocity vector there-
fore rotates with the constant yaw angle derivative:

VAg =
VA sin

(
Ψ̇ t
)

VA cos
(
Ψ̇ t
)

The wind comes from the west and therefore has only a yg component:

VW g =
[

0
VW

]

The flight-path velocity vector in the Earth-fixed axis system results from the vector sum:

VKg = VAg + VW g =
VA sin

(
Ψ̇ t
)

VA cos
(
Ψ̇ t
)+

[
0

VW

]
=
 VA sin

(
Ψ̇ t
)

VA cos
(
Ψ̇ t
)

+ VW


The magnitude of the flight-path velocity is a periodic function of time:

VKg = |VKg| =
√(

VA sin
(
Ψ̇ t
))2

+
(
VW + VA cos

(
Ψ̇ t
))2

=
√

V 2
A sin2

(
Ψ̇ t
)

+ V 2
W + 2VW VA cos

(
Ψ̇ t
)

+ V 2
A cos2

(
Ψ̇ t
)

=
√

V 2
A + V 2

W + 2VW VA cos
(
Ψ̇ t
)

If the flight-path speed of the aircraft changes in the course of the trochoid, the kinetic
energy cannot be constant either:

Ekin = 1
2mV 2

Kg ̸= const.

However, since the potential energy of the altitude remains constant during horizontal
curved flight, the energy must be taken directly from the surrounding wind field or given
off to it.
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5.5 Kinetics

The aircraft motion has six degrees of freedom, the three translational degrees of free-
dom:

• forward/backward

• right/left

• up/down

and the three rotational degrees of freedom:

• roll (about the x axis)

• pitch (about the y axis)

• yaw (about the z axis)

Each degree of freedom is described by two states (speed and position, or angular speed
and attitude angle) ⇒ 12 states in total.
These 12 states can be combined into four three-dimensional state vectors:
Angular velocity vector:

ΩK =

pK

qK

rK


Attitude vector:

Φ =

Φ
Θ
Ψ


Flight-path velocity vector:

VK =

uK

vK

wK


Position vector:

s =

x
y
z


The entire kinetics is then described by a system of four coupled, non-linear vector dif-
ferential equations:
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Ω̇K = fΩ (Q, ΩK)
Φ̇ = fΦ (ΩK , Φ)

V̇K = fV (R, VK , ΩK , Φ)
ṡ = fs (VK , Φ)

f  (R,V ,W ,F )V K K

f  (Q, W )W K

f  (V , F)s K

f  (W , F)F K

WKWK

.
Q

R VKVK

.

FF
.

ss
.

Figure 5.12: General kinetics of aircraft motion (6 degrees of freedom).

5.5.1 Differential Equation for the Position Vector

“Velocity is the change in position over time”:

ds

dt
= VK

Expressed in the Earth-fixed axis system:

dsg

dt
= VKg

Transformation of the flight-path velocity:

dsg

dt
= MgfVKf

Use the derivative point for the direct derivative in the geodetic (inertial) axis system:

ṡg = MgfVKf

5.5.2 Differential Equation for the Attitude Vector

“The angular velocity is the change in the attitude over time”:

dΦ

dt
= ΩK
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Expressed in the body-fixed axis system:(
dΦ

dt

)
f

= ΩKf

If all angle components of the attitude vector were now to rotate about the body-fixed
axes, then: (

dΦ

dt

)
f

This term would contain the time derivatives of the Euler angles:Φ̇
Θ̇
Ψ̇


The differential equation of the angle of rotation is thus complete.
Unfortunately, however, Ψ does not rotate about the zf axis, but about the zg axis and
Θ does not rotate about the yf axis, but about the k2 node axis. The corresponding two
angular derivatives must therefore first be transformed individually into the body-fixed
axis system:

(
dΦ

dt

)
f

=

Φ̇
0
0



+

1 0 0
0 cos Φ sin Φ
0 − sin Φ cos Φ


0
Θ̇
0



+

1 0 0
0 cos Φ sin Φ
0 − sin Φ cos Φ


cos Θ 0 − sin Θ

0 1 0
sin Θ 0 cos Θ


0

0
Ψ̇



=

1 0 − sin Θ
0 cos Φ sin Φ cos Θ
0 − sin Φ cos Φ cos Θ


Φ̇
Θ̇
Ψ̇


The differential equation of the attitude vector is then:

1 0 − sin Θ
0 cos Φ sin Φ cos Θ
0 − sin Φ cos Φ cos Θ


Φ̇
Θ̇
Ψ̇

 = ΩKf =

pKf

qKf

rKf


To solve for the derivative vector, the transformation matrix must be inverted. Unfor-
tunately, it is not orthogonal (because the Euler angles rotate about axes that are not
perpendicular to each other) and therefore cannot be inverted simply by transposing:

Φ̇ =

Φ̇
Θ̇
Ψ̇

 =

1 sin Φ tan Θ cos Φ tan Θ
0 cos Φ − sin Φ
0 sin Φ/cos Θ cos Φ/cos Θ

ΩKf = MΦf ·ΩKf (5.1)
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5.5.3 Differential Equation of the Flight-Path Velocity Vector

Momentum theorem: “The force R is the temporal change of the momentum P ”:
dP

dt
= R

Expressed in the body-fixed axis system:(
dP

dt

)
f

= Rf

Problem: The body-fixed axis system in which the change in momentum(
dP

dt

)
f

is described, is not an inertial system, but rotates with the flight-path angular velocity
ΩK with respect to the Earth, which is assumed to be at rest. As shown in section 5.5.3.1,
the rotation of the body-fixed axis system must therefore be taken into account in the
so-called Euler term (cross product) for the inertial derivation of the momentum:

Ṗf + ΩKf × Pf = Rf

“Momentum is mass times velocity”:

(mVKf )˙+ ΩKf × (mVKf ) = Rf

Product rule of differentiation:

ṁVKf + mV̇Kf + ΩKf × (mVKf ) = Rf

Neglecting the change in mass:

mV̇Kf + ΩKf × (mVKf ) = Rf

Factoring out the constant, scalar mass:

m
(
V̇Kf + ΩKf × VKf

)
= Rf

The total force from the engine, aerodynamics and weight is given by:

m
(
V̇Kf + ΩKf × VKf

)
= RF

f + RA
f + Gf

Transformation of weight and aerodynamic force:
m
(
V̇Kf + ΩKf × VKf

)
= RF

f + MfaRA
a + MfgGg

Solve for the derivative:

V̇Kf = 1
m

(
RF

f + MfaRA
a + MfgGg

)
−ΩKf × VKf

“Canceling” out the mass from the weight:

V̇Kf = 1
m

(
RF

f + MfaRA
a

)
+ Mfggg −ΩKf × VKf
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5.5.3.1 Derivative of a Vector in a Rotating Axis System

In the following, the geodetic axis system is understood as an inertial (stationary, space-
fixed) axis system and the body-fixed axis system is used as an example of a non-inertial
(rotating) axis system.
The inertial derivative (superscript g) of a vector V expressed in the body-fixed axis
system (subscript f) is obtained by transforming the vector from the body-fixed axis
system into the geodetic axis system, deriving it inertially there and then transforming it
back into the aircraft axis system:(

dV

dt

)g

f

= Mfg
d(MgfVf )

dt

Using the Product Rule:(
dV

dt

)g

f

= Mfg

Mgf

(
dV

dt

)f

f

+ d (Mgf )
dt

Vf


Multiply out: (

dV

dt

)g

f

= MfgMgf

(
dV

dt

)f

f

+ Mfg
d (Mgf )

dt
Vf

Combine matrices and use derivative points:(
dV

dt

)g

f

= V̇f + MfgṀgfVf

Therefore the term (
dV

dt

)f

f

= V̇f

is the derivative of the vector performed component-wise directly in the body-fixed axis
system, again expressed in the body-fixed axis system. The time derivative of the trans-
formation matrix:

d (Mgf )
dt

= Ṁgf

is also performed individually for each element of the matrix.
In a somewhat longer derivation (Matlab file:
http://buchholz.hs-bremen.de/rtfr/skript/euler_term.mlx)
the matrix product containing the Euler angle derivatives

MfgṀgf

can be combined to a cross product with the vector of the body-fixed flight-path angular
velocity:

(
dV

dt

)g

f

= V̇f + ΩKf × Vf

The cross product ΩKf × Vf is sometimes called the “Euler term”.
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5.5.3.2 Example: horizontal (tethered) turn (without banking, without slip-
ping )

xg

yg

xf

yf

xf

yf

VK

VK

xf

yf

VK

Ψ

Figure 5.13: Rotation of the body-fixed axis system and the flight-path velocity vector
during horizontal turn.

Since the flight-path velocity vector VK (tangential to the flight-path) rotates together
with the aircraft (and thus also with the body-fixed axis system) in a horizontal, bank-free
and slip-free turn, it always points in the xf direction.
It is therefore constant when expressed in the body-fixed axis system:

VKf =

uKf

0
0


Therefore, the derivative carried out component-wise directly in the body-fixed axis sys-
tem vanishes: (

dVK

dt

)f

f

= V̇Kf =

0
0
0


Since the flight-path lies in the Earth’s horizontal plane, the angular velocity vector can
only have a z component which is equal to the temporal change of the yaw angle in the
negative direction of rotation:

ΩKf =

 0
0
−Ψ̇


The complete inertial flight-path velocity vector derivative is then:

(
dV

dt

)g

f

= V̇f + ΩKf × Vf =

0
0
0

+

 0
0
−Ψ̇

×
uKf

0
0

 =

 0
−Ψ̇ · uKf

0


The term −Ψ̇ ·uKf corresponds, physically correct, exactly to the centripetal acceleration
which acts in the negative yf direction and keeps the aircraft on its circular path.
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5.5.4 Differential equation of the flight-path angular velocity
vector

The derivation of the angular speed differential equation is analogous to the derivation of
the velocity differential equation. Only the forces have to be replaced by the moments,
the momentum by the angular momentum, the velocity by the angular velocity and the
scalar mass by the tensor of the moments of inertia:
Angular momentum theorem: “The moment Q is the temporal change of the angular
momentum D”:

dD

dt
= Q

Expressed in the body-fixed axis system:

(
dD

dt

)
f

= Qf

Inertial derivation:
Ḋf + ΩKf ×Df = Qf

“Angular momentum is inertia tensor times angular velocity”:

(If ·ΩKf )˙+ ΩKf × (If ·ΩKf ) = Qf

Constant inertia tensor:

If · Ω̇Kf + ΩKf × (If ·ΩKf ) = Qf

Total moment from engines and aerodynamics

If · Ω̇Kf + ΩKf × (If ·ΩKf ) = QF
f + QA

f

Transformation of the aerodynamic moment vector:

If · Ω̇Kf + ΩKf × (If ·ΩKf ) = QF
f + MfaQA

a

Solve for the derivative:

Ω̇Kf = I−1
f ·

(
QF

f + MfaQA
a −ΩKf × (If ·ΩKf )

)
Unfortunately, the inertia tensor – as a matrix – cannot be excluded from the cross
product. For the same reason, its reciprocal value is calculated by regular matrix inversion.

106



5.5.4.1 The Inertia Tensor

The inertia tensor describes, analogously to the mass in translational motions, the inertia
with which the system resists a change in angular motion. However, while the mass as
a scalar quantity is the same in all translational directions, the angular inertias differ
depending on the axis of rotation considered.
In the body-fixed axis system, the (symmetric) inertia tensor is given by:

If =

 Ixf −Ixyf −Ixzf

−Ixyf Iyf −Iyzf

−Ixzf −Iyzf Izf


On its main diagonal are the moments of inertia: are:

Ixf =
∫ (

y2
f + z2

f

)
· dm

Iyf =
∫ (

x2
f + z2

f

)
· dm

Izf =
∫ (

x2
f + y2

f

)
· dm

In other words, a moment of inertia is the sum (integral) of all infinitesimally small mass
particles multiplied by the square of their respective lever arm (Pythagorean distance
from the corresponding axis of rotation).
The non-diagonal elements of the inertia tensor are called products of inertia:

Ixyf =
∫

(xf · yf ) · dm

Ixzf =
∫

(xf · zf ) · dm

Iyzf =
∫

(yf · zf ) · dm

In the case of a product of inertia, the mass particles are formally multiplied by two
lever arms (position coordinates) each, which has the consequence that for symmetrical
aircraft Ixyf and Iyzf disappear. If the xf -zf plane represents a plane of symmetry for
an aircraft, for every mass particle on the right side of the plane of symmetry there is a
corresponding (identical) mass particle on the left side. Both differ only by the sign of
their yf coordinate (right positive, left negative), so that the integral (the sum) always
disappears if the integrand contains a yf factor: Symmetrical aircraft:

Ixyf = Iyzf = 0

In addition to the moments of inertia, the inertia tensor then only contains the product
of inertia Ixzf :

If =

 Ixf 0 −Ixzf

0 Iyf 0
−Ixzf 0 Izf

 (5.2)

If the body-fixed axes are defined in the direction of the main inertia axes, then (and only
then) the last deviation moment also disappears:

Ixzf = 0
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Effect of the Deviation Moments Newton’s Second Law:

F = m · a

Can be transformed for rotary motion; the force F becomes the moment Q, the acceler-
ation a becomes the angular accelerationΩ̇ and the scalar mass m becomes the inertia
tensor I:

Q = I · Ω̇

Solving for the angular acceleration gives:

Ω̇ = I−1Q. (5.3)

The inversion of the inertia tensor can still be performed relatively clearly in an analytical
manner. The inverse of a matrix can be calculated from the quotient of its adjugate matrix
and its determinant:

I−1 = 1
|I|
· Iadj

Using eqn. (5.2) the result is (with the index f omitted for the sake of clarity):
 Ix 0 −Ixz

0 Iy 0
−Ixz 0 Iz


−1

= 1
IxIyIz − I2

xzIy

 IyIz 0 IxzIy

0 IxIz − I2
xz 0

IxzIy 0 IxIy



=


Iz

IxIz−I2
xz

0 Ixz

IxIz−I2
xz

0 1
Iy

0
Ixz

IxIz−I2
xz

0 Ix

IxIz−I2
xz


Now, if this inverse inertia tensor is used to establish the relationship between angular
acceleration Ω̇ and angular moment Q in eqn. (5.3).

Ω̇ = I−1 ·Qṗ
q̇
ṙ

 =


Iz

IxIz−I2
xz

0 Ixz

IxIz−I2
xz

0 1
Iy

0
Ixz

IxIz−I2
xz

0 Ix

IxIz−I2
xz


L
M
N



The first line shows that a roll acceleration ṗ is not only generated by a roll moment L,
but that a yaw moment N also contributes to the total roll acceleration via the deviation
moment Ixz:

ṗ = Iz

IxIz − I2
xz

L + Ixz

IxIz − I2
xz

N

Argued the other way round, a pure yaw moment not only causes a yaw acceleration but
also a parasitic roll acceleration.
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Vertical stabilizer

zf

xf

N, r

p

Figure 5.14: With a pure yaw moment, the aircraft also reacts with a roll acceleration (in
addition to the yaw acceleration) because of the “inertia” of the vertical stabilizer.

5.6 Quaternions

The non-orthogonal transformation matrix in the differential equation of the attitude
vector (5.1) contains the following quotients:

sin Φ tan Θ = sin Φ sin Θ

cos Θ
, cos Φ tan Θ = cos Φ sin Θ

cos Θ
,

sin Φ

cos Θ
,

cos Φ

cos Θ

The denominator disappears for a pitch angle Θ of ±π
2 . If additionally the roll angle Φ is

a multiple of π
2 , the corresponding quotient is indefinite

(
0
0

)
, otherwise the quotients take

on infinitely large values. A simulation terminates in all cases with an error message.
From a physical perspective, the indeterminacy problem manifests itself, for example,
in an airplane oriented vertically downwards

(
Θ = −π

2

)
, through the coincidence of the

geodetic z axis and the body-fixed x axis.
Both a “yaw” with Ψ̇ about the zg axis as well as a “roll” with Φ̇ about the xf axis now
lead to the same motion about the vertical aircraft longitudinal axis (gimbal lock).
To solve the problem, one can use the four components of a quaternion [ a b c d ] as state
variables in the differential equation of the attitude vector instead of the three Euler
angles [ Φ Θ Ψ ].

5.6.1 Properties of Quaternions

Quaternions are – similar to the complex numbers – an extension of the real numbers.
While a complex number z consists of a real part a and a scalar imaginary part b (z =
a + b · i), a quaternion Z has a real part a and a vectorial imaginary part [ b c d ], whose
components are each multiplied by their own imaginary unit i, j and k:

Z = a + b · i + c · j + d · k

The imaginary units are defined in the same way as complex numbers:

i2 = j2 = k2 = −1
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In addition, the product of two different imaginary units results in the third, and it is
anti-commutative (change of sign when the order is reversed):

i · j = k j · k = i k · i = j
j · i = −k k · j = −i i · k = −j

The sum of two quaternions is calculated component-wise:

Z1 + Z2 = (a1 + b1i + c1j + d1k) + (a2 + b2i + c2j + d2k)
= (a1 + a2) + (b1 + b2) i + (c1 + c2) j + (d1 + d2) k

whereas with the quaternion product the signs of the products of the imaginary units
must be taken into account:

Z1 · Z2 = (a1 + b1i + c1j + d1k) · (a2 + b2i + c2j + d2k)
= (a1a2 − b1b2 − c1c2 − d1d2)

+ (a1b2 + b1a2 + c1d2 − d1c2) i
+ (a1c2 − b1d2 + c1a2 + d1b2) j
+ (a1d2 + b1c2 − c1b2 + d1a2) k

The conjugate quaternion Z results – as with the complex numbers – from a negative sign
in the imaginary part:

Z = a + bi + cj + dk = a− (bi + cj + dk) = a− bi− cj− dk (5.4)

The product of a quaternion with its conjugate is purely real:

Z · Z = (a + bi + cj + dk) · (a− bi− cj− dk)
= (aa + bb + cc + dd)

+ (−ab + ba− cd + dc) i
+ (−ac + bd + ca− db) j
+ (−ad− bc + cb + da) k

= a2 + b2 + c2 + d2

and corresponds to the norm squared (magnitude squared) |Z|2 of the quaternion:

|Z| =
√

Z · Z =
√

a2 + b2 + c2 + d2

Any quaternion with a non-zero length can be transformed into its unit quaternion by
dividing it by its magnitude:

Z0 = Z

|Z|
= a

|Z|
+ b

|Z|
i + c

|Z|
j + d

|Z|
k (5.5)
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5.6.2 Calculation of the Quaternion from the Angle of Rotation
and the Axis of Rotation

In eqn. (4.1) the transformation matrix Mfg is defined, which consists of trigonometric
functions of the Euler angles Φ, Θ, and Ψ , and which transforms a vector v = [ x y z ]T
from the geodetic (index g) to the body-fixed (index f) axis system:xf

yf

zf

 =

 cos Θ cos Ψ cos Θ sin Ψ − sin Θ
sin Φ sin Θ cos Ψ − cos Φ sin Ψ sin Φ sin Θ sin Ψ + cos Φ cos Ψ sin Φ cos Θ
cos Φ sin Θ cos Ψ + sin Φ sin Ψ cos Φ sin Θ sin Ψ − sin Φ cos Ψ cos Φ cos Θ


xg

yg

zg


(5.6)

The same transformation can also be realised with a quaternion:

xg

xg, yg

xf

yg

yf

zg
zf

n
X

X

X

Figure 5.15: Total rotation from the geodetic to the body-fixed axis system with the
angle Ξ about the rotation axis n
.

For this purpose, the three individual rotations with Ψ , Θ, and Φ shown in figure 4.8, which
are necessary to transfer the geodetic axis system into the body-fixed axis system, are
combined into the total rotation with the angle Ξ about the rotation axis n = [ nx ny nz ]T
shown in figure 5.15. (The rotation axis has the same coordinates in both axis systems,
because the body-fixed axis system rotates exactly about the rotation axis and the co-
ordinates of the rotation axis do not change).
Provided that the rotation axis vector n is a unit vector (i. e. its length has been normalised
to one according to eqn. (5.5)), the corresponding unit quaternion ZD can be calculated
from the angle of rotation and axis of rotation:
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ZD = a + bi + cj + dk

= cos
(

Ξ

2

)
+ nx · sin

(
Ξ

2

)
i + ny · sin

(
Ξ

2

)
j + nz · sin

(
Ξ

2

)
k.

(5.7)

5.6.3 Calculation of the Angle of Rotation and the Axis of Ro-
tation from the Quaternion

For a given quaternion ZD = a + bi + cj + dk, the corresponding rotation angle Ξ and the
rotation axis n = [ nx ny nz ]T are calculated directly from eqn. (5.7). The real part of
the quaternion provides the angle of rotation:

a = cos
(

Ξ

2

)
⇒ Ξ = 2 arccos (a)

With the angle of rotation calculated, the axis of rotation then results from the imaginary
part of the quaternion:

bi + cj + dk = nx · sin
(

Ξ

2

)
i + ny · sin

(
Ξ

2

)
j + nz · sin

(
Ξ

2

)
k

⇒ n =



nx

ny

nz


=



b

sin
(

Ξ
2

)
c

sin
(

Ξ
2

)
d

sin
(

Ξ
2

)



5.6.4 Calculation of the Euler Angles from the Transformation
Matrix

Equations are obtained for the Euler angles from the individual elements of the trans-
formation matrix in eqn. (5.6):

M13 = − sin Θ (5.8)
M11 = cos Θ cos Ψ (5.9)
M12 = cos Θ sin Ψ (5.10)
M23 = sin Φ cos Θ (5.11)
M33 = cos Φ cos Θ (5.12)

The pitch angle follows directly from eqn. (5.8):

− sin Θ = M13 ⇒ Θ = − arcsin M13 (5.13)

From the quotient of eqs (5.10) and (5.9) the yaw angle is calculated
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cos Θ sin Ψ

cos Θ cos Ψ
= tan Ψ = M12

M11
⇒ Ψ = arctan

(
M12

M11

)
(5.14)

and the quotient of eqs (5.11) and (5.12) leads to the bank angle:

sin Φ cos Θ

cos Φ cos Θ
= tan Φ = M23

M33
⇒ Φ = arctan

(
M23

M33

)
(5.15)

In order to obtain the full range of angles (−π . . . π) for Ψ and Φ, the atan2() function
– available in most programming languages – must be used, which can also handle the
singularities that occur with a “normal” arc tangent when the denominators of eqs (5.14)
or (5.15) disappear because an angle is π

2 . In some publications it is suggested that after
calculating the pitch angle according to eqn. (5.13), it should be inserted into eqs (5.9) -
(5.12) in order to calculate Ψ and Φ with arcsin or arccos functions. In this way, however,
Ψ and Φ would be incorrectly restricted to the ranges (−π

2 . . . π
2 ) and (0 . . . π) respectively,

since arcsin and arccos are only able to deliver values in these ranges.

5.6.5 Calculation of the Transformation Matrix from the Qua-
ternion

The conjugate quaternion ZD to the quaternion defined in eqn. (5.7) is given by eqn. (5.4):

ZD = a− bi− cj− dk

The vector to be transformed vg = [ xg yg zg ]T is given in the form of a quaternion Zg:

Zg = 0 + xgi + ygj + zgk

The transformation to the body-fixed axis system analogous to eqn. (5.6) is then carried
out by means of two quaternion products:

Zf = ZD · Zg · ZD

= (a− bi− cj− dk) · (0 + xgi + ygj + zgk) · (a + bi + cj + dk)
= 0

+
((

a2 + b2 − c2 − d2
)

xg + 2 (bc + ad) yg + 2 (bd− ac) zg

)
i

+
(
2 (bc− ad) xg +

(
a2 − b2 + c2 − d2

)
yg + 2 (cd + ab) zg

)
j

+
(
2 (bd + ac) xg + 2 (cd− ab) yg +

(
a2 − b2 − c2 + d2

)
zg

)
k

(5.16)

The quaternion is given by:

Zf = 0 + xf i + yf j + zfk

and contains the components of the transformed vector vf = [ xf yf zf ]T . eqn. (5.16) can
be presented in matrix notation:xf

yf

zf

 =

(a2 + b2 − c2 − d2) 2 (bc + ad) 2 (bd− ac)
2 (bc− ad) (a2 − b2 + c2 − d2) 2 (cd + ab)
2 (bd + ac) 2 (cd− ab) (a2 − b2 − c2 + d2)


xg

yg

zg

 (5.17)
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The transformation matrix can be calculated directly from the quaternion components:

Mfg =

(a2 + b2 − c2 − d2) 2 (bc + ad) 2 (bd− ac)
2 (bc− ad) (a2 − b2 + c2 − d2) 2 (cd + ab)
2 (bd + ac) 2 (cd− ab) (a2 − b2 − c2 + d2)

 (5.18)

If the Euler angles are not explicitly required in a simulation, the transformation matrix
Mfg built up from the components of the quaternion from eqn. (5.18) can be used dir-
ectly in the differential equations of the flight-path velocity and the position, so that no
trigonometric functions of the Euler angles have to be calculated and the computational
effort is reduced.

5.6.6 Calculation of the Euler angles from the Quaternion

The Euler angles can be calculated directly from the quaternion components by inserting
the corresponding elements of the transformation matrix from eqn. (5.18) into eqs (5.13)
- (5.15):

Θ = − arcsin M13 = − arcsin (2 (bd− ac)) = arcsin (2 (ac− bd)) (5.19)

Ψ = arctan
(

M12

M11

)
= arctan

(
2 (bc + ad)

a2 + b2 − c2 − d2

)
(5.20)

Φ = arctan
(

M23

M33

)
= arctan

(
2 (cd + ab)

a2 − b2 − c2 + d2

)
(5.21)

Of course, in a numerical implementation of eqs (5.19) - (5.21), the atan2() function
must also be used here.

5.6.7 Calculation of the Quaternion from the Euler Angles

The transformation from the geodetic to the body-fixed axis system shown in eqn. (5.16)
with the aid of the total quaternion ZD can also be built up from the inside outwards
from the three individual quaternions ZΨ , ZΘ and ZΦ:

Zf = ZΦ ·
(
ZΘ ·

(
ZΨ · Zg · ZΨ

)
· ZΘ

)
· ZΦ

=
(
ZΦ · ZΘ · ZΨ

)
· Zg · (ZΨ · ZΘ · ZΦ)

= (ZΨ · ZΘ · ZΦ)︸ ︷︷ ︸
ZD

·Zg · (ZΨ · ZΘ · ZΦ)︸ ︷︷ ︸
ZD

(5.22)

The associative law that applies to quaternions is taken into account as well as the fact
that the conjugate of a quaternion product is equal to the product of the individual
conjugates in reverse order.
The single quaternions are constructed according to eqn. (5.7) from the respective rotation
angles (Ψ , Θ, and Φ) and the corresponding rotation axes (nΨ = [ 0 0 1 ]T , . . . ):
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ZΨ = cos
(

Ψ

2

)
+ 0 · sin

(
Ψ

2

)
i + 0 · sin

(
Ψ

2

)
j + 1 · sin

(
Ψ

2

)
k

= cos
(

Ψ

2

)
+ sin

(
Ψ

2

)
k

ZΘ = cos
(

Θ

2

)
+ 0 · sin

(
Θ

2

)
i + 1 · sin

(
Θ

2

)
j + 0 · sin

(
Θ

2

)
k

= cos
(

Θ

2

)
+ sin

(
Θ

2

)
j

ZΦ = cos
(

Φ

2

)
+ 1 · sin

(
Φ

2

)
i + 0 · sin

(
Φ

2

)
j + 0 · sin

(
Φ

2

)
k

= cos
(

Φ

2

)
+ sin

(
Φ

2

)
i

According to eqn. (5.22), the total quaternion ZD is then given as a function of the Euler
angles:

ZD = ZΨ · ZΘ · ZΦ

=
(

cos
(

Ψ

2

)
+ sin

(
Ψ

2

)
k
)(

cos
(

Θ

2

)
+ sin

(
Θ

2

)
j
)(

cos
(

Φ

2

)
+ sin

(
Φ

2

)
i
)

= cos
(

Ψ

2

)
cos

(
Θ

2

)
cos

(
Φ

2

)
+ sin

(
Ψ

2

)
sin

(
Θ

2

)
sin

(
Φ

2

)
+
(

cos
(

Ψ

2

)
cos

(
Θ

2

)
sin

(
Φ

2

)
− sin

(
Ψ

2

)
sin

(
Θ

2

)
cos

(
Φ

2

))
i

+
(

cos
(

Ψ

2

)
sin

(
Θ

2

)
cos

(
Φ

2

)
+ sin

(
Ψ

2

)
cos

(
Θ

2

)
sin

(
Φ

2

))
j

+
(

sin
(

Ψ

2

)
cos

(
Θ

2

)
cos

(
Φ

2

)
− cos

(
Ψ

2

)
sin

(
Θ

2

)
sin

(
Φ

2

))
k

(5.23)

5.6.8 Calculation of the Quaternion from the Transformation
Matrix

The pragmatic way to calculate the quaternion from the transformation matrix with the
tools presented so far would first determine the Euler angles from the transformation
matrix and then the quaternion from the Euler angles. However, since the known prob-
lems with the Euler angles occur (computationally time-intensive trigonometric functions,
“gimbal lock”, c.f. secrefQuaternionen), a direct alternative is explained below.
Eqn. (5.18) represents the transformation matrix Mfg as a function of the quaternion
components a, b, c, and d. To calculate the first quaternion component a, the main
diagonal elements of the transformation matrix are summed up:

M11 + M22 + M33 =
(
a2 + b2 − c2 − d2

)
+
(
a2 − b2 + c2 − d2

)
+
(
a2 − b2 − c2 + d2

)
= 3a2 − b2 − c2 − d2 (5.24)

The condition that the quaternion has a magnitude of unity:

a2 + b2 + c2 + d2 = 1
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Can be solved for b2

b2 = 1− a2 − c2 − d2

and substituted in eqn. (5.24)

M11 + M22 + M33 = 3a2 −
(
1− a2 − c2 − d2

)
− c2 − d2 = 4a2 − 1 (5.25)

So that eqn. (5.25) can be solved for the sought quaternion component:

a =
√

M11 + M22 + M33 + 1
2 (5.26)

Two matrix elements can be carefully chosen, such that:

M23 −M32 = 2 (cd + ab)− 2 (cd− ab) = 4ab

each provides a determining equation for the remaining quaternion components:

b = M23 −M32

4a
c = M31 −M13

4a
d = M12 −M21

4a
(5.27)

Unfortunately, when calculating the quaternion according to eqs (5.26) - (5.27), there
is the problem that the quaternion component a – which is present in eqn. (5.27) in
all denominators – can become zero, so that the other components can no longer be
calculated. The component a, which – according to eqn. (5.23) – results from

a = cos
(

Ψ

2

)
cos

(
Θ

2

)
cos

(
Φ

2

)
+ sin

(
Ψ

2

)
sin

(
Θ

2

)
sin

(
Φ

2

)

disappears, for example, if one Euler angle has the value 0 and another the value π, since
then both a cosine and a sine and thus both summands become zero. In this case, the
calculation can begin with the second quaternion component b by summing the diagonal
elements of the transformation matrix with different signs:

M11 −M22 −M33 =
(
a2 + b2 − c2 − d2

)
−
(
a2 − b2 + c2 − d2

)
−
(
a2 − b2 − c2 + d2

)
= −a2 + 3b2 − c2 − d2

so that, using
a2 = 1− b2 − c2 − d2

yields a definition for b:

M11 −M22 −M33 = −
(
1− b2 − c2 − d2

)
+ 3b2 − c2 − d2 = 4b2 − 1

⇒ b =
√

M11 −M22 −M33 + 1
2

With b, the other components can then also be determined:

c = M12 + M21

4b
d = M13 + M31

4b
a = M23 −M32

4b
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In total, there are four sets of determining equations, depending on which diagonal element
signs and thus which quaternion component is started with:

a =
√

M11 + M22 + M33 + 1
2 b = M23 −M32

4a
c = M31 −M13

4a
d = M12 −M21

4a

b =
√

M11 −M22 −M33 + 1
2 c = M12 + M21

4b
d = M13 + M31

4b
a = M23 −M32

4b

c =
√
−M11 + M22 −M33 + 1

2 d = M23 + M32

4c
a = M31 −M13

4c
b = M12 + M21

4c

d =
√
−M11 −M22 + M33 + 1

2 a = M12 −M21

4d
b = M13 + M31

4d
c = M23 + M32

4d

Since the quaternion to be calculated is a unit quaternion, at least one of its components
must be significantly different from zero so that it can be started with. In numerical
practice, one can simply search for the largest radicant ±M11 ±M22 ±M33 + 1 to decide
which set of governing equations to use.

5.6.9 Differential Equation of the Quaternions

Under the important assumption that the quaternion Z = a + bi + cj + dk is a unit qua-
ternion, the attitude differential eqn. (5.1) can be replaced by the very compact quaternion
differential equation:

Ż = 1
2 · Z · ZΩ (5.28)

Here ZΩ is a pure quaternion (with vanishing real part), whose imaginary part consists
of the three elements pKf , qKf , and rKf of the body-fixed angular velocity vector ΩKf :

ZΩ = 0 + pKf i + qKf j + rKfk

On the right-hand side of the quaternion differential eqn. (5.28), the quaternion product
can be multiplied out:

Ż = 1
2 · Z · ZΩ

= 1
2 · (a + bi + cj + dk) · (0 + pKf i + qKf j + rKfk)

= 1
2 · { (−pKf · b− qKf · c− rKf · d)

+ (pKf · a + rKf · c− qKf · d) i
+ (qKf · a− rKf · b + pKf · d) j
+ (rKf · a + qKf · b− pKf · c) k }

(5.29)

5.6.10 Numerical Simulation

Often – for example for numerical simulation – eqn. (5.29) is represented in matrix nota-
tion by expressing the quaternion Z = a + bi + cj + dk in terms of a real column vector
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Z = [ a b c d ]T and the right-hand side of eqn. (5.29) as a matrix-vector product:

Ż =


ȧ

ḃ
ċ

ḋ

 = 1
2


0 −pKf −qKf −rKf

pKf 0 rKf −qKf

qKf −rKf 0 pKf

rKf qKf −pKf 0

 ·

a
b
c
d

 = 1
2 ·MΩ ·Z (5.30)

During a longer simulation, unavoidable numerical errors can lead to the prerequisite for
eqn. (5.30), namely the fact that Z is a unit quaternion, no longer being fulfilled.
In order to keep this error as small as possible, a simple proportional control is suitable.
The control error ∆Z = 1−|Z|, i. e. the deviation of the quaternion’s magnitude from one,
is thereby scaled with the current state Z and fed back to all components of the quaternion
integrator via a proportional controller with the gain K. The extended eqn. (5.30) then
reads:

Ż = 1
2 ·MΩ ·Z + K ·∆Z ·Z

= 1
2 ·MΩ ·Z + K (1− |Z|) Z

= 1
2 ·MΩ ·Z + K

(
1−
√

a2 + b2 + c2 + d2
)

Z

(5.31)

To save computing time, the magnitude in eqn. (5.31) can be replaced by the magnitude
squared without qualitatively changing the control behaviour:

Ż = 1
2 ·MΩ ·Z + K

(
1−

(
a2 + b2 + c2 + d2

))
Z (5.32)

As with any controller design, a compromise has to be found for the controller gain K.
If K is too small, the quaternion amount can deviate significantly from one, while a too
large K leads to a stiffening of the system to be simulated, with the consequence of longer
computation times and the danger of numerical instability.
The presented method for preserving the quaternion unit length has the advantage that
it is not necessary to directly change the quaternion – which is part of the state vector of
the simulation. However, if the simulation environment allows the direct setting of state
variables without major effort, the quaternion can simply be made into a unit quaternion
again after each integration step by dividing it by its magnitude.
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Chapter 6

Controller Design

6.1 Natural Response

6.1.1 Division of the State Variables into Longitudinal and Lat-
eral Motion

Table 6.1: State Variables of Longitudinal and Lateral Motion

ΩK VK Φ s

Longitudinal motion qK uK wK Θ x z

Lateral motion pK rK vK Φ Ψ y

6.1.2 Longitudinal Motion

DE

LoM

OE

LoM

F

h

qK

uK

Q

wK

x
z H

a

g

VK

Input
variables

State
variables

Output
Variables

Figure 6.1: Differential equations and output equations of longitudinal motion (without
wind).
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.j Im(s)

Re(s)

PhygoidShort period

Figure 6.2: Pole distribution of the longitudinal motion.

6.1.2.1 Short Period
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0
t

α

Figure 6.3: Short period.

• “α oscillation”

• pitch oscillation in qK , α, Θ

• high frequency (e. g.: f = 0.1 Hz, T = 10 s)

• medium damping (e. g.: D = 0.5)
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6.1.2.2 Phygoid
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Figure 6.4: Phygoid oscillation.

• “energy oscillation”

• flight-path oscillation in Vk, γ

• low frequency (e. g.: f = 0.01 Hz, T = 100 s)

• can become unstable (e. g.: D = 0)

6.1.3 Lateral Motion
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LaM
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Input
variables
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Output
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Figure 6.5: Differential equations and output equations of lateral motion (without wind).
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Spiral mode
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Figure 6.6: Pole distribution of the lateral motion.

6.1.3.1 Dutch Roll

0 5 10 20 25 3015

0.004

0

0.008

0.012
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t

β

Figure 6.7: Dutch roll.

• angular oscillation in β, Ψ , Φ, pk, rk

• high frequency (e. g.: f = 0.1 Hz, T = 10 s)

• low damping (e. g.: D = 0.1)

6.1.3.2 Roll motion

• “roll low pass”, “roll delay”

• aperiodic roll motion in pk, Φ

• time constant: e. g.: T = 1 s
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6.1.3.3 Spiral mode

• “open integrator” with “some” feedback

• ξ block → stationary bank angle

• can be unstable → spiral dive

6.2 Trim Calculation

Trimming is the calculation of trim variables (input and state variables) so that specified
trim requirements (output and state derivative variables) are met. The trim calculation
determines the (mostly steady-state) initial state of a simulation.

6.2.1 Horizontal Straight Flight

Task: An un-accelerated, slip-free, horizontal straight flight without wind is to be trimmed.
The relevant input, state and output variables of the longitudinal motion are:
Input variables:

u =
[
F η

]T
State variables:

x =
[
qKf uKf wKf Θ

]T
Output variables:

v =
[
VK γ α · · ·

]T
Firs Idea: Horizontal flight is defined by the specification of a certain flight-path velo-

city VK and by the requirement of a vanishing angle of climb γ = 0. These two
trim requirements can be fulfilled by the two trim variables thrust F and elevator
η. Thrust and elevator adjust both the energy and the moment balance of the lon-
gitudinal motion in such a way that an unaccelerated flight at a constant altitude
is possible.

Second Idea: Unfortunately, from a physical point of view, thrust and elevator do not
directly influence the desired flight-path speed and angle of climb. Thrust and el-
evator generate forces and moments that directly lead only to accelerations and
angular accelerations. The (angular) accelerations are then integrated by the (an-
gular) velocity integrators of the kinetics into velocities and angular velocities. In
the second integration step, position and attitude follow from this.
For example, the elevator η essentially generates a pitch moment M , which leads
directly to a pitch acceleration q̇K via the pitch moment of inertia. The first in-
tegration then turns the pitch acceleration into a pitch speed qK and the second
integrator generates the pitch angle Θ from this. Pitching simultaneously changes
the angle of attack α, which leads to a change of the lift A. The changed lift (vertical
force) then generates a vertical acceleration ẇK , which in turn is integrated into a

123



vertical speed wK . Only this vertical velocity results in a vertical position change
and thus the desired change of the angle γ.
Brielfy: A trim algorithm cannot directly set the desired trim requirement (angle of
climb) by “tweaking” the elevator trim value.

Third Idea: The internal state variables involved in the definition of the desired flight
state (qKf , uKf , wKf , Θ) must also be trimmed. The determination of the pitch
speed qKf is simple. It must disappear for a steady-state straight flight, as otherwise
the aircraft would pitch up or down permanently.
To determine the remaining three trim values (uKf , wKf , Θ), three more trim
requirements must be found. These follow directly from the requirement for an
unaccelerated flight: neither pitch accelerations nor translational accelerations may
occur: q̇Kf = u̇Kf = ẇKf = 0.
If the flight condition is trimmed out, all other output variables follow automatically:
the angle of attack α, for example, is calculated directly from α = Θ − γ for pure
longitudinal motion without wind.

6.2.2 Generalisation

The knowledge gained from the example of the longitudinal motion of an aircraft can be
generalised. A general non-linear dynamic system can be described by a vector differential
equation and an algebraic vector output equation:
Vector differential equation:

ẋ = f (x, u)

Vector output equation:
v = g (x, u)

f(x,u) g(x,u)
u x

.
x v

Figure 6.8: General non-linear dynamic system.

Trim requirements (known) Elements of ẋ and v (left side of equations)

Trim variables (unknown) Elements of x and u (right side of equations)

6.2.2.1 Procedure

1. For each trim requirement, leave a trim variable free that can fulfil (or at least
influence) the requirement.
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2. For each trim variable, establish a trim requirement by which the trim variable is
defined (or at least constrained).

3. Set the elements of x and u, that are not trim variables to fixed values.

4. The elements of ẋ and v, that are not trim requirements follow automatically.

6.2.3 Engine dynamics

Each dynamic subsystem (actuator dynamics, sensors, filters, controllers, . . . ) of the
overall system to be trimmed must also be trimmed.
If, for example, an engine is modelled as a limited first-order system and the thrust
command Fc is searched for, which causes a desired flight-path speed VK , then the output
F of the thrust integrator must be seen as an additional trim variable and its input Ḟ as
a further trim requirement. Of course, when trimmed out, the thrust F will be equal to
the thrust command Fc; however, both are unknown and must therefore be determined
together by the trim program.
Each additional trim variable requires exactly one additional trim requirement. Therefore,
for a stationary trim point (constant thrust), the derivative of the thrust is required to
be zero: Ḟ = 0.

1/TF

Fc Fc beg

.

-

F F VK

Figure 6.9: Engine dynamics with saturation.

6.2.3.1 Saturation

Saturation is a serious problem for many trimming algorithms. Usually, the optimiser in
the trim program varies the trim variables according to a more or less intelligent procedure
until the objective function containing the trim requirements has become better than a
given limit. If, however, during this search procedure a saturation is triggered because the
trim algorithm has increased a trim variable above its maximum value “on a trial basis”,
suddenly a small variation of the trim variable no longer causes any change in the trim
requirements.
The gradient-oriented trim algorithm “no longer knows in which direction it should con-
tinue to optimise” and aborts with an error message.
In these cases, it often helps to reduce the maximum step size of the corresponding trim
variable so that the algorithm does not “accidentally” violate the saturation in a step that
is too large. In addition, it is of course useful to set each trim variable to an estimated
initial value that is as close as possible to the expected trim point. For example, if the
maximum thrust of an engine in cruise flight is 90 kN, it certainly makes more sense to
set the initial value of the trim variable thrust to perhaps 60 kN rather than to 0 kN or
even 100 kN.
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6.3 Basic Controller

The basic controller dampens the natural response (pitch, yaw and roll dampers) and
controls the airspeed, pitch angle, bank angle and side-slip angle. The commands for these
input variables of the basic controller can either come directly from the pilot (e. g. sidestick
commanded rate command attitude hold for pitch and roll angle) or from a superimposed
flight-path control loop.

6.3.1 Basic Controller of Longitudinal Motion

-

-

Aircraft

(Longitudinal
motion)

KV

KQ

VAc

Qc h

Khq

qK

Q

F VA

Figure 6.10: Basic controller of the longitudinal motion.

Kηq The pitch damper uses the elevator to dampen the short period. In doing so, the
(measured) pitch speed is compared with a reference value of zero (so to speak),
and the elevator is always deflected in such a way that the resulting pitch moment
and the resulting pitch acceleration counteract the pitch speed.

KΘ The pitch controller uses the same control input (elevator) as the pitch damper
and controls the pitch angle. The pitch angle reference can be set directly by the
pilot (e. g. by means of the longitudinal sidestick) or by an outer (cascaded) flight-
path controller (altitude controller, . . . ).

KV The airspeed controller (autothrottle) uses the thrust to maintain an airspeed
reference. To prevent a steady-state control error, the airspeed controller can have
an integral component.
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6.3.2 Basic Controller of the Lateral Motion
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Figure 6.11: Basic controller of lateral motion.

Kζr The yaw damper measures the yaw rate and uses the rudder to dampen the Dutch
roll. During a stationary turn, the yaw damper should not be active, if possible, so
as not to suppress the yaw rate that is then desired (→ use of a high pass, which
does not “let through” constant yaw rates).

Kξp The roll damper uses the aileron to change the roll time constant.

Kβ The side-slip angle controller uses the rudder to control the side-slip angle.
Often, for example in a coordinated turn, the side-slip angle should disappear (ref-
erence value equal to zero) to ensure a symmetrical, economical flow. The side-slip
angle reference can be commanded with the pedals, for example, or it is specified
by the autopilot (e. g. during the decrab manoeuvre to align the landing gear in the
direction of the runway when approaching with a crosswind).

KΦ The bank angle controller uses the same control input (aileron) as the roll damper
and provides for the control of the bank angle. The desired bank angle can be set
directly by the pilot (e. g. by means of the lateral sidestick) or by an outer (cascaded)
flight-path controller controller (course controller, . . . ).
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6.4 Flight-Path Controller

The flight-path controller (altitude controller and flight-path azimuth controller) uses
the “basic-controlled” aircraft as a “modified plant” in the sense of a cascade control.
The control variables of the basic controller (pitch angle and bank angle) are directly
commanded by the flight-path controller.

6.4.1 Cascade Control

GC1GC2 GP1 GP2

x 1 x2w2 w1 y

--

Modified, controlled
partial plant G ’P1

Figure 6.12: Cascade control.

• Outer control loop supplies reference for inner control loop.

• Design the inner control loop to be fast and without steady-state accuracy.

• Outer control loop provides steady-state accuracy.

6.4.2 Altitude and Flight-Path Azimuth Control

-

-

Aircraft

+

Basic 
controller

KH

Kc
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Fc

Qc

ccc

H

Figure 6.13: Altitude and flight-path azimuth control.
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KH In this cascade control, the altitude controller does not have direct access to
the elevator, but commands a pitch angle reference to the basic controller of the
longitudinal motion, which in turn intervenes in the aircraft’s moment balance via
the elevator in order to adjust the pitch angle accordingly. In order to achieve
steady-state accuracy for altitude control, the altitude controller can be designed as
a PI(D) controller.

Kχ The flight-path azimuth controller controls the flight-path azimuth by passing
on a reference for the bank angle to the basic controller. As an alternative to the
flight-path azimuth, the yaw angle (heading) can be used as a controlled variable
(e. g. for availability reasons).
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