
Trefoil knot

Jörg J. Buchholz

December 21, 2022

https://m-server.fk5.hs-bremen.de/trefoil_knot
http://prof.red

1. Introduction

In this paper we want to create the trefoil knot depicted in figure 1.1 in Matlab [1].

Figure 1.1.: A trefoil knot

Wikipedia [2] says:
In knot theory, a branch of mathematics, the trefoil knot is the simplest

example of a nontrivial knot. The trefoil can be obtained by joining together
the two loose ends of a common overhand knot, resulting in a knotted loop.

2

2. Mathematical background

2.1. Three-dimensional space curve

The surface of the trefoil knot in figure 1.1 is just a radial expansion of the three-
dimensional space curve illustrated in figure 2.1

-1

0z

2

1

31
2

y

0
1

x

-1 0
-2 -1

-2

Figure 2.1.: 3D space curve

The space curve is defined in [2] by the parametric equation given in equation (2.1):

r(t) =

x(t)
y(t)
z(t)

 =

cos (t) + 2 cos (2t)
sin (t)− 2 sin (2t)
− sin (3t)

 (2.1)

In order to understand how the space curve is created, we take a closer look at its three
components. The first component is a sum of two cosine functions

x(t) = x1(t) + x2(t) = cos (t) + 2 cos (2t)

3

Chapter 2. Mathematical background 2.1. Three-dimensional space curve

of which the first one is a cosine with an amplitude of 1 and an angular frequency1 of 1
(blue graph in figure 2.2 over one period: t = 0 . . . 2π)

x1(t) = cos(t) (2.2)

while the second one is a greater, faster cosine with an amplitude of 2 and an angular
frequency of 2 (red graph in figure 2.2):

x2(t) = 2 cos (2t) (2.3)

Therefore, we can construct the sum of equation (2.2) and equation (2.3) point-by-point
for every t-value and come up with the w-shaped yellow graph in figure 2.2.

0 1 2 3 4 5 6

t

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

x 1
, x

2
, x

x
1
 = cos(t)

x
2
 = 2 cos(2 t)

x = x
1
 + x

2

Figure 2.2.: x(t) = x1(t) + x2(t) = cos (t) + 2 cos (2t)

Applying the same procedure to the second component of the 3D curve

y(t) = y1(t) + y2(t) = sin (t)− 2 sin (2t)

we overlay a smaller, slower sine (blue, amplitude: 1, frequency: 1) with a greater, faster,
negative sine (red, amplitude: −2, frequency: 2) in order to construct the yellow graph
in figure 2.3.

1We deliberately omit the physical units of angular frequency and time.

4

Chapter 2. Mathematical background 2.1. Three-dimensional space curve

0 1 2 3 4 5 6

t

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

y 1
, y

2
, y

y
1
 = sin(t)

y
2
 = -2 sin(2 t)

y = y
1
 + y

2

Figure 2.3.: y(t) = y1(t) + y2(t) = sin (t)− 2 sin (2t)

In the next step, we draw the graphs of both components x(t) and y(t) in one diagram
(figure 2.4)

5

Chapter 2. Mathematical background 2.1. Three-dimensional space curve

0 1 2 3 4 5 6

t

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

x,
 y

x(t) = cos(t) + 2 cos(2 t)
y(t) = sin(t) - 2 sin(2 t)

Figure 2.4.: x(t) and y(t)

and construct the 2D parametric equation

r2D(t) =
[
x(t)
y(t)

]
=
[
cos (t) + 2 cos (2t)
sin (t)− 2 sin (2t)

]

as a generalized Lissajous curve in figure 2.5, where x is the abscissa, y is the ordinate,
and t is the parameter of the curve.

6

Chapter 2. Mathematical background 2.1. Three-dimensional space curve

-2 -1 0 1 2 3

x

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

y

t

Figure 2.5.: Two-dimensional curve in parametric representation: r2D(t)

By comparing figure 2.5 to figure 2.4, we realize that r2D(t)

• starts (and ends) with the red dot • at
[
3 0

]
for t = 0 (and t = 2π), reaches

• a local y-minimum with the green dot •
• a global x-minimum with the blue dot •
• a global y-maximum with the cyan dot •
• a local x-maximum with the magenta dot • at

[
1 0

]
for t = π

• . . .
Finally, we use the third component of equation (2.1)

z(t) = − sin(3t)

depicted in figure 2.6 to move every single point of figure 2.5 into the third dimension.

7

Chapter 2. Mathematical background 2.1. Three-dimensional space curve

0 1 2 3 4 5 6

t

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

z

z = -sin(3 t)

Figure 2.6.: z(t) = − sin(3t)

All red points, t = (4k + 3) · π6 , k ∈ Z, defined in figure 2.6 will be raised up to a
maximum height of +1, while all blue points, t = (4k+ 1) · π6 , will be pushed down to a
minimum height of −1, and all green points, t = k · π3 , remain at a height of 0.
We visualize figure 2.5 in the z = 0 plane2 of the three-dimensional coordinate system
in figure 2.7 and indicate that

• red points • will be raised up
• blue points • will be pushed down
• green points • keep their height

2Note that all points in figure 2.7 still have a z-component of 0.

8

Chapter 2. Mathematical background 2.1. Three-dimensional space curve

-2

-1

0

1

2

3

x
-2

-1

0

1

2

y

-1

0

1
z

Figure 2.7.: 3D visualization of 2D curve with height motion indicators

And here comes the magic: Knowing that all red dots in figure 2.8 are positioned at
the ceiling of the axes box at z = +1, all blue dots lie on the floor at z = −1, and all
green dots (still) have a height of z = 0 makes it much easier to interpret the 3D curve
in figure 2.8.

-1

0z

2

1

31
2

y

0
1

x

-1 0
-2 -1

-2

Figure 2.8.: 3D curve with lifted (red) and lowered (blue) points

9

Chapter 2. Mathematical background 2.2. Radial expansion

2.2. Radial expansion

In order to expand the space curve of figure 2.1 into the trefoil object of figure 1.1, we
create a tubular surface with a constant radius around the space curve, using the space
curve as its center line (figure 2.9).

Figure 2.9.: Radial expansion of a space curve into a 3D object

It seems to be a natural choice to construct the tube of figure 2.9 by stringing together
cylinders3 with very small lengths (figure 2.10a).

(a) Undistorted cylinder (b) Distorted cylinder

Figure 2.10.: Related vertices should be as close as possible.

3To be precise, the elements of the tube are not really exact cylinders. Because of the curvature of
the space curve, the terminal circles in figure 2.10a are not exactly parallel; this is very obvious in
figure 2.14. On the other hand, as long as we use enough small tube elements, we can reasonably
approximate them as cylinders.

10

Chapter 2. Mathematical background 2.2. Radial expansion

2.2.1. Vertices and faces

In most 3D programs, a surface can be created by defining its vertices and its faces. As
indicated in figure 2.10a we define the terminal circles by a sufficient number of vertices
(red dots) and each “rectangular” face by four vertices.
A plane is defined by three points. Therefore, graphic cards expect surfaces to be defined
by triangles. Internally, Matlab does this triangulation, but also allows users to define
faces with more than three vertices. This makes sense if all vertices are coplanar (i. e. if
all vertices lie in one plane)

V1 =

0
0
0

 , V2 =

1
0
0

 , V3 =

1
1
0

 , V4 =

0
1
0

as illustrated in figure 2.11a, but seems a little odd if not all vertices are coplanar:

V1 =

0
0
0

 , V2 =

1
0
0

 , V3 =

1
1
0

 , V4 =

0
1
1

Matlab displays a strange three-dimensional “surface” without any crease in that case
(figure 2.11b).

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.2

0.4

0.6

0.8

1

V1

V2

V3

V4

(a) Four coplanar vertices create a planar
surface.

0
1 1

0.2

0.8 0.8

0.4

0.6

0.6 0.6

0.8

0.4 0.4

1

0.2 0.2
00

V1

V2

V3

V4

(b) If the four vertices are not coplanar,
Matlab displays a creaseless nonplanar
surface.

Figure 2.11.: In Matlab we can create planar and nonplanar surfaces.

Other 3D programs use the clockwise or anti-clockwise order of the three vertex indices
in the face matrix to define the normal vector of the triangle. By that, a triangle can
be visible from one side and invisible from the other side.
Matlab surfaces are automatically double-sided and are therefore always visible from
both sides. It does not matter whether we define an anti-clockwise vertex order of

11

Chapter 2. Mathematical background 2.2. Radial expansion

[
1 2 3 4

]
or a clockwise vertex order of

[
4 3 2 1

]
or any other “continuous perime-

ter” order like
[
2 3 4 1

]
,
[
3 4 1 2

]
, . . . They all lead to the correct surface in

figure 2.12a.
But if we “jump across diagonals” using vertex indices orders like

[
1 2 4 3

]
,
[
4 3 1 2

]
,

. . . Matlab comes up with the strange “surface” in figure 2.12b.

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.2

0.4

0.6

0.8

1

V1

V2

V3

V4

(a) Correct vertex order
[
1 2 3 4

] 0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.2

0.4

0.6

0.8

1

V1

V2

V3

V4

(b) Incorrect vertex order
[
1 2 4 3

]
Figure 2.12.: The vertex order in the face matrix is important.

By defining the four vertices that make up a “rectangle” in figure 2.10, we run into
another problem: If we use arbitrary corresponding vertices to define the faces, we might
end up with the “twisted parallelograms” of figure 2.10b and the “cylinder” becomes
distorted. Therefore, it seems to be very important to chose the corresponding vertices
as close to each other as possible. While this could be achieved by actually looking
for the nearest partner vertex in the corresponding terminal circle, we will use a more
general way in section 2.2.3.

2.2.2. Circle in parameter representation

We can create a unit circle around the origin by defining two orthonormal basis vectors
N and B and use the angle θ as the parameter in a parametric circle representation
(figure 2.13):

R = N cos θ + B sin θ (2.4)

12

Chapter 2. Mathematical background 2.2. Radial expansion

N

B

y

R

q
x

Figure 2.13.: Unit circle in parametric representation

To reach single vertices (red dots in figure 2.13) the parameter θ has to cycle through
distinct values

θi = 2π
n
i

where the integer index i with {i ∈ N0 | 0 ≤ i < n} addresses a single vertex and n is
the number of vertices on the circle.

2.2.3. Moving trihedron

As displayed in figure 2.10, we have to make sure that the basis vectors defining two
consecutive circles only change minimally.
A moving trihedron or moving frame provides a set of three orthogonal unit vectors,

• the tangent vector T , representing the current direction of the curve,
• the normal vector N , pointing towards the center of the current circle of curvature,
• the binormal vector B, orthogonal to T and N ,

for every point of a space curve. As illustrated in figure 2.14, we can use N and B
as orthonormal basis vectors to create unit circles containing the vertices of the tube
around the curve.

13

Chapter 2. Mathematical background 2.2. Radial expansion

T

T

T

N
N

N

B

B

B

Figure 2.14.: Moving trihedron

In order to compute the trihedron, we define the following vectors:
r(t) is the position vector from the origin to a point on the space curve (figure 2.15).
ṙ(t) is the derivative of r(t) with respect to the parameter t:

ṙ(t) = dr(t)
dt

r̈(t) is the derivative4 of ṙ(t) with respect to t:

r̈(t) = dṙ(t)
dt

According to the Frenet-Serret formulas [3], the tangent vector T is just the normalized
first derivative:

T = ṙ

|ṙ|
(2.5)

The binormal vector B is the normalized cross product5 of the first and the second
derivative:

B = ṙ × r̈

|ṙ × r̈|
(2.6)

4If we interpret the parameter t as time, ṙ(t) is the velocity and r̈(t) is the acceleration of the moving
point r(t).

5Since the cross product of two vectors creates a new vector orthogonal to both vectors, B is orthogonal
to both ṙ and r̈, and since T is collinear to ṙ according to equation (2.5), B is also orthogonal to
T .

14

Chapter 2. Mathematical background 2.2. Radial expansion

Finally, the normal vector N is the cross product6 of the binormal vector and the tangent
vector:

N = B × T (2.7)

Using N and B as an orthonormal basis in figure 2.15, we can now define the position
vector rc(θ) of a point on the unit circle via

rc(θ) = r + N cos θ + B sin θ (2.8)

where r is the position vector of a point on the space curve defining the center of the
circle and the angle θ is the parameter in the parameter representation of the circle
(equation (2.4)).

N
O

rc

r

B

q

Figure 2.15.: Circle around a point of the space curve

6We do not have to normalize N because it equals the cross product of two orthogonal unit vectors B
and T . Since the norm |N | of the resulting cross product vector equals the area of the parallelogram
set up by B and T , and the parallelogram degenerates to a square with a side length of 1 in this
case, the area of the square and thus the norm of the normal vector N equal 1 too. Note that
the cross product of two unit vectors results in another unit vector only if both unit vectors are
orthogonal to each other.

15

3. Matlab implementation

3.1. trefoil_knot.m

trefoil_knot is the main program that computes and displays the trefoil knot.

3.1.1. Analytical description of the space curve

While other tube generating functions take the points of a space curve and approximate
the first and second derivatives numerically, we live in the luxury of having a mathe-
matical description of the space curve (equation (2.1)) and can therefore use Matlab’s
Symbolic Math Toolbox to compute the derivatives analytically.
We declare a symbolic parameter
syms t

define the three components of the space curve according to equation (2.1)
x = cos (t) + 2 * cos (2 * t);
y = sin (t) - 2 * sin (2 * t);
z = -sin (3 * t);

and create the 3D position vector:
r = [x y z];

The Symbolic Math Toolbox makes it very easy to compute the first derivative (dr)
dr = diff (r);

ṙ(t) =

− sin(t) + 4 sin (2t)
cos(t)− 4 cos(2t)
−3 cos (3t)

and the second derivative (ddr) of the symbolic position vector analytically:
ddr = diff (dr);

r̈(t) =

− cos (t)− 8 cos (2t)
− sin (t) + 8 sin (2t)

9 sin (3t)

16

Chapter 3. Matlab implementation 3.1. trefoil_knot.m

3.1.2. Initialization

We define the number of circles (i. e. the number1 of cylinders in the tube)
n_circles = 200;

the number of vertices per circle (figure 2.13)
n_vertices_per_circle = 50;

and the radius2 of the tube:
radius = 0.6;

Using the number of circles, we define a vector of n_circles evenly spaced parameter
values (tt) in the domain t = 0 . . . 2π
tt = linspace (0, 2 * pi , n_circles);

and compute the corresponding vectors of the position
rr = double (subs (r, t, tt ’));

the first derivative
drr = double (subs (dr , t, tt ’));

and the second derivative
ddrr = double (subs (ddr , t, tt ’));

of the space curve at these points. From this point on, we will use numerical com-
putations. Therefore, the double commands convert the symbolic vectors to numeric
vectors.
In the next step, we have to define the vertices and faces of the tube according to
section 2.2.1. We compute the total number of vertices from the number of circles and
the number of vertices per circle
n_vertices = n_circles * n_vertices_per_circle ;

and initialize the vertex matrix3 with zeros:
vertices = zeros (n_vertices , 3);

The number of faces (figure 2.10a) takes into account that the first and the last circle
are identical and that the first and the last vertex of a circle are identical:
n_faces = (n_circles - 1) * (n_vertices_per_circle - 1);

1Since the first (t = 0) and the last circle (t = 2π) are identical, there is one circle more than there
are cylinders.

2The arbitrarily chosen radius of 0.6 leaves a bit of open space around the tube (figure 1.1).
3The vertex matrix has three columns for the x-, y- and z-components of each vertex.

17

Chapter 3. Matlab implementation 3.1. trefoil_knot.m

For the initialization of the face matrix we consider the fact that each “rectangular” face
consists of four vertices (figure 2.10a):
faces = zeros (n_faces , 4);

3.1.3. Vertex matrix creation

In a loop over all circles
for i_circle = 1 : n_circles

we call the function circle3 (section 3.2) with the position (rr), the first (drr), and
the second derivative (ddrr) of the current space curve point in order to compute the
vertex matrix (c) of the current circle according to section 2.2.3:

c = circle3 (...
rr(i_circle , :), ...
drr(i_circle , :)’, ...
ddrr(i_circle , :)’, ...
radius , n_vertices_per_circle);

Every column of the circle vertex matrix represents one vertex of the circle:

c =

x1 x2 · · · x50
y1 y2 · · · y50
z1 z2 · · · z50

 (3.1)

Matlab’s general vertex matrix uses one vertex per row:

vertices =

cT1
−−−
cT2
−−−
...

−−−
cT200

=

c1x1 c1y1 c1z1

c1x2 c1y2 c1z2
...

...
...

c1x50 c1y50 c1z50

−−− −−− −−−
c2x1 c2y1 c2z1

c2x2 c2y2 c2z2
...

...
...

c2x50 c2y50 c2z50

−−− −−− −−−
...

...
...

−−− −−− −−−
c200x1 c200y1 c200z1

c200x2 c200y2 c200z2
...

...
...

c200x50 c200y50 c200z50

(3.2)

18

Chapter 3. Matlab implementation 3.1. trefoil_knot.m

In order to concatenate the vertices of all circles into one large matrix as in equation (3.2),
we could use a simple concatenation statement like
vertices = [vertices ; c ’];

inside the loop together with a an empty initialization before the loop, but we have
all internalized that it is bad practice to let arrays grow inside a loop without proper4

memory preallocation. Instead, we copy each (transposed) circle into the corresponding
sub-matrix of the vertex matrix directly by using appropriate indices:

vertices (...
(i_circle - 1) * n_vertices_per_circle + 1 : ...
i_circle * n_vertices_per_circle , :) = c’;

end

3.1.4. Face matrix creation

Each row in Matlab’s face matrix (equation (3.3)) defines the indices of the four vertices
that make up one “rectangular” patch (section 2.2.1):

faces =

f1v1 f1v2 f1v3 f1v4

f2v1 f2v2 f2v3 f2v4
...

...
...

...
f10000v1 f10000v2 f10000v3 f10000v4

 (3.3)

We initialize a face index counter
i_face = 1;

and start an outer loop over all circles and an inner loop over all vertices of the current
circle:
for i_circle = 1 : n_circles - 1

for i_vertex = 1 : n_vertices_per_circle - 1

Addressing the four vertex indices of a single face is a bit tricky since the first two vertices
are part of one circle (i_circle - 1) and the last two vertices are part of another circle
(i_circle) according to figure 2.10a.
Additionally, in order to avoid the problem of figure 2.12b, we have to take the correct
order of the vertex indices into account. Therefore, the second and the third vertex in
the following lines of code both use a + 1 index:

4Is there a proper way to preallocate memory for an array of known final size if the array grows inside
a loop by concatenation?

19

Chapter 3. Matlab implementation 3.1. trefoil_knot.m

faces (i_face , :) = [...
i_vertex + (i_circle - 1) * n_vertices_per_circle , ...
i_vertex + (i_circle - 1) * n_vertices_per_circle + 1, ...
i_vertex + (i_circle) * n_vertices_per_circle + 1, ...
i_vertex + (i_circle) * n_vertices_per_circle , ...
];

Finally, we increment the face index counter inside the inner loop:
i_face = i_face + 1;

end

end

3.1.5. Patch me up

We are now ready to create the graphical representation of the trefoil knot of figure 1.1.
We open a new figure
figure

and use the matrix of vertices from section 3.1.3 and the matrix of faces from sec-
tion 3.1.4 to define the surface of the knot:
patch (...

Faces = faces , ...
Vertices = vertices , ...
FaceColor = [0.0638 , 0.7446 , 0.7292] , ...
EdgeColor = ’none ’, ...
);

The chosen FaceColor is the a nice dark cyan (actually, it is the 128th element of the
parula colormap). If we omitted EdgeColor = ’none’, we would see “rectangular”
edges5 as in figure 3.1.

5If we look very closely at figure 3.1 we can discover that Matlab indeed does a (non-perfect) tri-
angulation of the “rectangular” patches if we ask it to export the figure into a pdf-document via
exportgraphics (gcf, ’test.pdf’, ’ContentType’, ’vector’). In the original Matlab figure,
the triangulation is not visible.

20

Chapter 3. Matlab implementation 3.2. circle3.m

Figure 3.1.: Patch with edges (and visible triangulation)

Switching on a light
light

and asking Matlab to vary the light across the faces by using the recommended gourand
lighting method for curved surfaces
lighting gouraud

makes the knot look a bit more photorealistic. We scale all axis equally
axis equal

switch off the axis system
axis off

use Matlab’s standard view for three-dimensional objects
view (3)

and finally arrive at the smooth trefoil knot display of figure 1.1.

3.2. circle3.m

The circle3 function
function circle_vertices = circle3 (...

center , ...
first_derivative , ...
second_derivative , ...
radius , ...
n_vertices)

21

Chapter 3. Matlab implementation 3.2. circle3.m

is called for every point of the space curve in section 3.1.3 in order to create a unit circle
around the point as described in section 2.2.3. We supply the function with the current
point (center), the current tangent (first_derivative), the current second_deriva-
tive pointing towards the center of the current circle of curvature, the radius of the
circle to be created, and the number of vertices (n_vertices) of the polygonal chain
approximating the circle.
For the sake of flexibility, we have outsource the computation of the normal vector and
the binormal vector from the first and second derivative at the current point into the
function tnb described in section 3.3:
[~, normal , binormal] = tnb (...

first_derivative (:), ...
second_derivative (:));

tnb returns the tangent, normal, and binormal vectors of which we only use the normal
and the binormal.
We define a vector holding the linearly spaced angles of the circle vertices
th = linspace (0, 2 * pi , n_vertices);

and compute the vertices of the circle according to equation (2.8) in a very compact and
elegant way:
circle_vertices = ...

center (:) + ...
radius * (normal * cos (th) + binormal * sin (th));

end

The fact that the lines above actually work at all, is another sign of Matlab’s Marvelous
Matrix Manipulation Magic: Since circle_vertices has to be a 3 × n_vertices ma-
trix according to equation (3.1), we compute the outer (or dyadic) product of the column
vector normal and the row vector cos (th) via a common matrix matrix product, which
is nothing too special. But then, we add a column vector center(:) and a matrix,
which definitely is quite strange from a mathematical point of view.
To understand why this vector matrix sum does not result in a dimensions mismatch
error, we have to know that in R2016b, MathWorks expanded Matlab’s arithmetic [4].
We can now e. g. add a column vector a and a row vector b:
syms a1 a2 b1 b2

a = [a1; a_2]

a =
(
a1
a2

)
b = [b1 , b2]

22

Chapter 3. Matlab implementation 3.3. tnb.m

b =
(
b1 b2

)
M = a + b

M =
(
a1 + b1 a1 + b2
a2 + b1 a2 + b2

)
This mathematically unusual “outer” (or “dyadic”) sum results in a matrix M , the
elements Mij of which are the sums of the corresponding vector elements:

Mij = ai + bj

3.3. tnb.m

As described in section 3.2, the tnb function
function [tangent , normal , binormal] = tnb (r_dot , r_dot_dot)

is called for each point of the space curve and computes the tangent, the normal, and
the binormal vector of the curve at the current point from the first derivative (r_dot)
and the second derivative (r_dot_dot) vector.
According to equation (2.5), the tangent vector is just the normalized first derivative:
tangent = r_dot / norm (r_dot);

As stated by equation (2.6), the binormal vector is the normalized cross product of the
first and the second derivative:
binormal = cross (r_dot , r_dot_dot);
binormal = binormal / norm (binormal);

In accordance with equation (2.7), the normal vector is the cross product of the binormal
vector and the tangent vector:
normal = cross (binormal , tangent);

end

23

Bibliography

[1] MathWorks. (2022) Matlab. [Online]. Available: https://de.mathworks.com/
products/matlab.html

[2] Wikipedia. (2022) Trefoil knot. [Online]. Available: https://en.wikipedia.org/wiki/
Trefoil_knot

[3] ——. (2022) Frenet-Serret formulas. [Online]. Available: https://en.wikipedia.org/
wiki/Frenet-Serret_formulas

[4] L. Shure. (2016) MATLAB arithmetic expands in R2016. Math-
Works. [Online]. Available: https://blogs.mathworks.com/loren/2016/10/24/
matlab-arithmetic-expands-in-r2016b/

24

https://de.mathworks.com/products/matlab.html
https://de.mathworks.com/products/matlab.html
https://en.wikipedia.org/wiki/Trefoil_knot
https://en.wikipedia.org/wiki/Trefoil_knot
https://en.wikipedia.org/wiki/Frenet-Serret_formulas
https://en.wikipedia.org/wiki/Frenet-Serret_formulas
https://blogs.mathworks.com/loren/2016/10/24/matlab-arithmetic-expands-in-r2016b/
https://blogs.mathworks.com/loren/2016/10/24/matlab-arithmetic-expands-in-r2016b/

A. Null space

In section 2.2.3, we describe the creation of the moving trihedron from the first and the
second derivative at each point of the space curve. In this appendix, we want to show
why we cannot utilize Matlab’s null command to compute the normal and the binormal
vector from the tangent vector.
Matlab states:

Use the null function to calculate orthonormal and rational basis vectors
for the null space of a matrix. The null space of a matrix contains vectors x
that satisfy Ax = 0.

If we define an arbitrary vector n

n = [1 2 3]

we can compute its null space:
nn = null (n)

nn =

-0.5345 -0.8018
0.7745 -0.3382

-0.3382 0.4927

The column vectors n1 and n2 of the null space
n1 = nn(:, 1)

n1 =

-0.5345
0.7745

-0.3382

n2 = nn(:, 2)

n2 =

-0.8018
-0.3382
0.4927

25

Appendix A. Null space

are unit vectors
norm (n1)

ans =

1

norm (n2)

ans =

1

and are orthogonal to each other and to the original vector:
dot (n1 , n2)

ans =

-1.6653e -16

dot (n, n1)

ans =

3.3307e -16

dot (n, n2)

ans =

2.2204e -16

These properties should qualify the null space vectors of the tangent vector to be used
as normal and binormal vectors instead of the method of section 2.2.3 and section 3.3.
And indeed, we can use the null space vectors for parts of the trefoil knot, but if we
want to display a whole knot at once, we end up with figure A.1.

26

Appendix A. Null space

Figure A.1.: Trefoil knot using null space to compute normal and binormal vectors

There seem to be points of discontinuity at t = k · π2 , k ∈ Z, where the null space vectors
“jump” and we run into the distorted cylinder problem demonstrated in figure 2.10b.
In detail1 we can show that the null spaces for t = +0
null (double (subs (dr , t, eps)))

ans =

-0.7071 -0.7071
0.5000 -0.5000

-0.5000 0.5000

and t = −0
null (double (subs (dr , t, -eps)))

ans =

0.7071 0.7071
0.5000 -0.5000

-0.5000 0.5000

are similar but not identical at all.
If we plot the null space vectors for a few small negative and small positive t-values
(figure A.2)

1Note, that eps is the floating-point relative accuracy in Matlab, which is a “very small number”
(ε = 2.2204 · 10−16).

27

Appendix A. Null space

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0.5
0
-0.5 3.63.43.232.82.62.4

Figure A.2.: Null space vectors for small negative and small positive parameter values

it becomes obvious that the null space vectors show discontinuities at certain parameter
values and that we cannot use them as continuous normal and binormal vectors for that
reason.

28

	Introduction
	Mathematical background
	Three-dimensional space curve
	Radial expansion
	Vertices and faces
	Circle in parameter representation
	Moving trihedron

	Matlab implementation
	trefoil_knot.m
	Analytical description of the space curve
	Initialization
	Vertex matrix creation
	Face matrix creation
	Patch me up

	circle3.m
	tnb.m

	Null space

