
xu_n

delta_xu_n

xu_n_trimxu_n_newxu_n_old

Trim
Point

First
Iteration

Initial
Guess

dy_k_old

dy_k_new

dy_k_trim

delta_dy_k

dy_k

Tangent

h_k

TrimMod 2.2

Jörg J. Buchholz

February 16, 2022

https://m-server.fk5.hs-bremen.de/trimmod
http://prof.red

1 Manual

TrimMod1 (figure 1.1) finds the trim point (equilibrium2) of a Simulink system.
The user can load a Simulink system, define certain trim requirements and ask TrimMod
to calculate the corresponding trim variables that are necessary to satisfy the require-
ments. Finally, the Simulink system is initialized with the new trim point.

Figure 1.1: TrimMod 2.2

1.1 Block diagram and typical use case

As depicted in figure 1.2, the user opens the main app trimmod.mlapp (figure 1.1) and
loads the Simulink model to be trimmed (e. g. model.slx) via the File | Open Model
menu entry and – if already existing – a trim point file (e. g. trimpoint.mat) via File |
Load Trim Point.

1TrimMod 2.2 has been developed and tested with Matlab 2021b.
2In fact, even non-equilibrium (instationary, accelerated, . . .) trim points can be found.

2

Chapter 1. Manual 1.1. Block diagram and typical use case

The user can then alter the trim requirements and the trim variables and define addi-
tional parameters (maximum number of trim iterations, cost value to be gained, . . .) by
calling trimmod_parameters.mlapp (chapter 3) via the Options | Additional Parameters
menu entry.
If the trim point is formally well defined (i. e. the number of trim requirements equals the
number of trim variables), the user can select the Action | Trim menu entry: trimmod
calls jj_trim.m (chapter 5) that does the actual trimming and returns the new trim
point. This trim point is displayed in TrimMod and automatically transferred to the
Modeling | Model Settings | Configuration Parameters | Data Import/Export | Load from
workspace menu entry of the Simulink system.
Finally, calling trimmod_overview.mlapp (chapter 4) via the Options | Show Overview
menu entry displays the values of states, inputs, . . . for every single iteration step of
the trim process (figure 4.1).
The user can save the current trim point at any time by selecting the File | Save Trim
Point As menu entry.

trimmod

trimmod_parameters trimmod_overview

jj_trim

model.slx trimpoint.mat

Figure 1.2: TrimMod block diagram

3

2 trimmod app

Unlike TrimMod 1.x, which was a classic GUIDE fig-file with a corresponding m-file
(figure 2.1)

Figure 2.1: TrimMod 1.x

we designed TrimMod 2.2 as a contemporary Matlab App with the App Designer (fig-
ure 1.1).
Matlab Apps are classes that inherit methods (delete, findobj, listener, . . .) from
Matlab’s App base class:
classdef trimmod < matlab .apps. AppBase

4

Chapter 2. trimmod app

The App Designer automatically generates public properties for all the user interfaces
(menus, tables, . . .) we created in the Design View:
properties (Access = public)

TrimModelUIFigure matlab .ui. Figure
FileMenu matlab .ui. container .Menu
OpenModelMenu matlab .ui. container .Menu
LoadTrimPointMenu matlab .ui. container .Menu
SaveTrimPointMenu matlab .ui. container .Menu
SaveTrimPointasMenu matlab .ui. container .Menu
ExitTrimModMenu matlab .ui. container .Menu
ActionMenu matlab .ui. container .Menu
TrimMenu matlab .ui. container .Menu
UntrimMenu matlab .ui. container .Menu
OptionsMenu matlab .ui. container .Menu
AdditionalParametersMenu matlab .ui. container .Menu
ShowOverviewMenu matlab .ui. container .Menu
HelpMenu matlab .ui. container .Menu
HelponTrimModMenu matlab .ui. container .Menu
AboutTrimModMenu matlab .ui. container .Menu
GridLayout matlab .ui. container . GridLayout
UITable_output matlab .ui. control .Table
UITable_derivative matlab .ui. control .Table
UITable_state matlab .ui. control .Table
TrimRequirementsLabel matlab .ui. control .Label
TrimVariablesLabel matlab .ui. control .Label
UITable_input matlab .ui. control .Table

end

We declare a few private variables for the use in more than one method
properties (Access = private)

parameters_app
overview_app
model_name
model_path
initial_conditions
state_names_with_nl
state_types
state_names
derivative_names
inport_names
n_inports
outport_names
n_outports
pre_trim
output_names
input_names

5

Chapter 2. trimmod app 2.1. save_trim_point

end

and some public variables that can also be accessed by other apps (chapter 3 and
chapter 4) too:
properties (Access = public)

n_states
n_outputs
n_inputs
parameters
info_struct
jaco_figure
x
u
d
y
x_nam
u_nam
d_nam
y_nam
i_x
i_u
i_d
i_y

end

Nearly all trimmod methods are callback functions and therefore automatically generated
by the App Designer. The only method
methods (Access = private)

defined by ourselves is the function that saves the table data in a specific file (section 2.1).

2.1 save_trim_point

The private method save_trim_point saves the current table data – defining the current
trim point – and the additional trim parameters in the file named via its parameter list:
function save_trim_point (app , file_name)

We create a save structure and add the current model name to the structure:
save_struct = struct (’model_name ’, app. model_name);

Additionally, we want to save the contents of all four tables (input, state, derivative,
output)

6

Chapter 2. trimmod app 2.2. startupFcn

save_struct . input_data = app. UITable_input .Data;
save_struct . state_data = app. UITable_state .Data;
save_struct . derivative_data = app. UITable_derivative .Data;
save_struct . output_data = app. UITable_output .Data;

and the additional trim parameters:
save_struct . parameters = app. parameters ;

Finally, we save the structure in the file defined via the parameter list:
save (file_name , ’save_struct ’);
end
end

The following methods
methods (Access = private)

are callback functions auto-generated by the App Designer.

2.2 startupFcn

The startupFcn executes when the app starts up, but before the first user interaction:
function startupFcn (app)

We use it to initialize additional trim parameters with their default values and save them
as public properties:
app. parameters . n_iter_max = 42;
app. parameters . cost_tbg = 1e -9;
app. parameters . CompileFlag = 1;
app. parameters . n_bisec_max = 10;
app. parameters . EnableMessages = true;

We will later directly access these parameters from section 3.1 and section 3.2.
Additionally, we add the current directory (the path to TrimMod) to Matlab’s search
path1:
addpath (cd);

1TrimMod calls other apps and functions in its own directory. Therefore, this directory has to be on
Matlab’s search path if we change the current directory to the model path later on (section 2.7).

7

Chapter 2. trimmod app 2.3. ExitTrimModMenuSelected

App position and size
Furthermore, we might want to adjust the position of the app with respect to the current
screen resolution. As a default, we chose a Full HD (1080p) app resolution (1920×1080)
that most modern monitors can display. If this is not the case, we adjust the app
resolution to the current monitor resolution.
We obtain a handle to the primary monitor
pri_mon = groot;

and the default2 app position of [1, 50, 1920, 980], including a safety margin3 of 50
pixel at the bottom and at the top of the app:
win_pos = app. TrimModelUIFigure . Position ;

If the app width is greater than the screen width
if win_pos (3) > pri_mon . ScreenSize (3)

we set the app width to the screen width:
win_pos (3) = pri_mon . ScreenSize (3);
app. TrimModelUIFigure . Position = win_pos ;

end

If the app height is greater than the screen height (including the safety margins)
if win_pos (4) > pri_mon . ScreenSize (4) - 100

we set the app height to the (reduced) screen height:
win_pos (4) = pri_mon . ScreenSize (4) - 100;
app. TrimModelUIFigure . Position = win_pos ;

end

2.3 ExitTrimModMenuSelected

The ExitTrimModMenuSelected method is called if the user selects the File | Exit Trim-
Mod menu or if they press the red window close button:
function ExitTrimModMenuSelected (app , event)

2We defined the app’s default UIFigure position of [1, 50, 1920, 980] in the Design View of the
App Designer.

3Finding “safe” positions in a graphical Windows-based application is really a PITA. In Windows 10,
the user could adjust the size of the taskbar, make it automatically disappear, or glue it to the top
or even to the sides of the screen. Therefore, a safety margin of 50 pixel – which is the default height
of the taskbar – at the bottom and at the top of the app should work in many standard Windows
environments.

8

Chapter 2. trimmod app 2.4. AboutTrimModMenuSelected

In this case, we want to give the user a last chance to save the current trim point.
Therefore, we open a confirmation dialog box4

button_choice = uiconfirm (...
app. TrimModelUIFigure , ...
’Save trim point before exiting ?’, ...
’Save trim point ’, ...
’Options ’,{’Yes ’, ’No’, ’Cancel ’}, ...
’DefaultOption ’, 1, ...
’CancelOption ’, 3);

and take action depending on their choice:
switch button_choice

If they have pressed the Cancel button
case ’Cancel ’

we do not want to do anything and directly terminate this method:
return

If they confirm that they want to save the current trim point,
case ’Yes ’

we call the appropriate method (section 2.10):
SaveTrimPointAsMenuSelected (app , event)

end

If the user has not pressed the Cancel button, we close additional windows (apps and
figures) that TrimMod might have opened
delete (app. parameters_app)
delete (app. overview_app)
delete (app. jaco_figure)

and finally close TrimMod itself:
delete (app)
end

2.4 AboutTrimModMenuSelected

The Help | About TrimMod menu method AboutTrimModMenuSelected

4Yes, the dialog box is also opened if the user has not changed anything. Maybe later ...

9

Chapter 2. trimmod app 2.5. HelponTrimModMenuSelected

function AboutTrimModMenuSelected (app , event)

just displays a classic About dialog
helpdlg ({ ...

’TrimMod 2.2 ’; ...
’Joerg J. Buchholz ’; ...
’Hochschule Bremen ’; ...
’buchholz@hs - bremen .de’}, ...
’About TrimMod ’);

end

with contact details of the author (figure 2.2).

Figure 2.2: About TrimMod

2.5 HelponTrimModMenuSelected

As an additional help option, the Help | Help on TrimMod menu entry
function HelponTrimModMenuSelected (app , event)

opens this documentation:
open (’trimmod .pdf ’)

2.6 AdditionalParametersMenuSelected

As described in chapter 3, the Options | Additional Parameters menu entry
function AdditionalParametersMenuSelected (app , event)

opens another app by the name of trimmod_parameters:
app. parameters_app = trimmod_parameters (app);
end

10

Chapter 2. trimmod app 2.7. OpenModelMenuSelected

2.7 OpenModelMenuSelected

The File | Open Model menu entry
function OpenModelMenuSelected (app , event)

opens an existing model and extracts all state, input, and output names of this model.
First, we ask the user via a file selection dialog box which model they want to open:
[file_name , file_path] = uigetfile (’*. slx ;*. mdl ’, ’Open Model ’);

Unfortunately, we now have to bring back the app window to front after a file selection
dialog box. This is a bug workaround that might be unnecessary in the future:
figure (app. TrimModelUIFigure);

If the user has pressed the Cancel button of the file selection dialog box
if ~ file_name

we do not want to do anything and directly terminate this method:
return

end

If the user has selected a valid model, we extract the model name without the file
extension and save it in a property of this app:
app. model_name = strtok (file_name , ’.’);

We extract the model path and save it without the trailing backslash:
app. model_path = file_path (1 : (end - 1));

In order to inform the user about the model they have chosen, we insert the model name
in the name of the app figure:
app. TrimModelUIFigure .Name = [’Trim Model ’, app. model_name];

We actively set Matlab’s working directory to the path of the current model5:
cd (app. model_path);

We delete all state, inport, derivative, and outport names. This is necessary if the
previously opened model had more states than the current one6:

5In some cases this might not be the best idea especially since we never actively set the path back
to where we came from. Nevertheless, in some cases the current model depends on other files
in the same directory and since we already added the path to TrimMod to Matlab’s search path
(section 2.2), it seems safe to make the model directory the current one.

6Actually, this is only necessary for the derivatives, but well . . .

11

Chapter 2. trimmod app 2.7. OpenModelMenuSelected

app. state_names = {};
app. inport_names = {};
app. derivative_names = {};
app. outport_names = {};

For the next two commands, we first have to open the main system block diagram
internally without bringing it to front:
load_system (app. model_name);

We uncheck (disable) the Load from Workspace | Initial state and Input checkboxes in
the Configuration Parameters page of the current model:
set_param (app.model_name , ’LoadInitialState ’, ’off ’);
set_param (app.model_name , ’LoadExternalInput ’, ’off ’);

This prevents an error if the user has changed the number of states or inputs in the
model since the last trim.
By calling the model, we receive the number of states, inputs, and outputs, the initial
states, and the state names7:
[sizes , app. initial_conditions , app. state_names_with_nl] = ...
eval (app. model_name);

We extract the number of continuous states, inputs, and outputs
app. n_states = sizes (1);
app. n_outputs = sizes (3);
app. n_inputs = sizes (4);

find the block types of all states8

app. state_types = ...
get_param (app. state_names_with_nl , ’blocktype ’);

and substitute potential newline characters in the state names by blanks for better
readability in the tables with the help of the external function kill_nl:
app. state_names = kill_nl (app. state_names_with_nl);

States
In a loop over all the states
for i_state = 1 : app. n_states

we strip the model name from the state names in order to make them easier to read in
the tables

7Since Matlab Release 11 (Version 5.3), the state names might include newline characters.
8Valid state block types are Integrator, StateSpace, TransferFcn, ZeroPole, and M-S-Function.

12

Chapter 2. trimmod app 2.7. OpenModelMenuSelected

app. state_names { i_state } = ...
app. state_names { i_state }(length (app. model_name) + 2 : end);

end

In another loop over all the states, we want to uniquefy multiple state names:
for i_state = 1 : app. n_states

First, we have to find the names of multiple states
matches = find ...

(strcmp (app. state_names (i_state), app. state_names));

and their numbers
n_matches = length (matches);

If multiple state names have been found
if n_matches > 1

we start a loop over all copies of a multiple state name
for i_match = 1 : n_matches

and append ___1, ___2, . . . to every copy of a multiple state name
app. state_names { matches (i_match)} = ...

[app. state_names { matches (i_match)}, ’___ ’, ...
num2str (i_match)];

end
end

Derivatives get the expression Deriv. of in front of their names to make sure the user
understands that these are the derivatives of the states:

app. derivative_names { i_state } = ...
[’Deriv. of ’, app. state_names { i_state }];

end

Inports
In order to detect vector inports (that have more than one input), we have to compile9

the model:
feval (app.model_name , [], [], [], ’compile ’);

We now want to distinguish between inports and inputs. We find and save all inports10

9This command “initiates” the simulation allowing us to access parameters that are only accessible in
this state. On the other hand, later on, before we can actually start the simulation, we have to reset
the model to the “uncompiled” state by feval (app.model_name, [], [], [], ’term’);.

10The FollowLinks parameter finds inports in libraries, too.

13

Chapter 2. trimmod app 2.7. OpenModelMenuSelected

app. inport_names = find_system (app.model_name , ...
’FollowLinks ’, ’on’, ...
’searchdepth ’, 1, ...
’Blocktype ’, ’Inport ’);

and the number of inports
app. n_inports = length (app. inport_names);

initialize the input names cell array
app. input_names = cell (app.n_inputs , 1);

and an input counter
i_input = 1;

and start a loop over all inports
for i_inport = 1 : app. n_inports

We determine the number of inputs of the current inport11

n_inputs_of_port = get_param (app. inport_names { i_inport }, ...
’CompiledPortWidths ’). Outport ;

and strip the model name from the port names in order to make them more readable in
the table

app. inport_names { i_inport } = ...
app. inport_names { i_inport } ...
(length (app. model_name) + 2 : end);

If the current inport is a vector inport, it represents more than one input
if n_inputs_of_port > 1

and we start a loop over all inputs of the current inport:
for i_inputs_of_port = 1 : n_inputs_of_port

As with the states, we append ___1, ___2, . . . to every copy of a multiple input name
app. input_names { i_input } = ...

[app. inport_names { i_inport }, ’___ ’, ...
num2str (i_inputs_of_port)];

and increment the input index
i_input = i_input + 1;

end

11It sounds strange, but seems logical if you think about it: The inputs represented by a certain inport
are the "outports" of this inport.

14

Chapter 2. trimmod app 2.7. OpenModelMenuSelected

If the current inport is scalar
else

we simply copy the inport name to the input name
app. input_names { i_input } = app. inport_names { i_inport };

and increment the input index
i_input = i_input + 1;

end
end

Outports
Since the processing of the outports and outputs is conceptually identical to the steps
described in the previous section, we do not comment every single command:
app. outport_names = find_system (app.model_name , ...

’FollowLinks ’, ’on’, ...
’searchdepth ’, 1, ...
’Blocktype ’, ’Outport ’);

app. n_outports = length (app. outport_names);

app. output_names = cell (app.n_outputs , 1);

i_output = 1;

for i_outport = 1 : app. n_outports
n_outputs_of_port = get_param ...

(app. outport_names { i_outport }, ...
’CompiledPortWidths ’). Inport ;

app. outport_names { i_outport } = ...
app. outport_names { i_outport } ...
(length (app. model_name) + 2 : end);

if n_outputs_of_port > 1
for i_outputs_of_port = 1 : n_outputs_of_port

app. output_names { i_output } = ...
[app. outport_names { i_outport }, ’___ ’, ...
num2str (i_outputs_of_port)];

i_output = i_output + 1;
end

else
app. output_names { i_output } = ...

15

Chapter 2. trimmod app 2.7. OpenModelMenuSelected

app. outport_names { i_outport };

i_output = i_output + 1;
end

end

As described in footnote (9), we have to revoke the simulation initialization (compilation)
that we only needed to determine the number of inputs and outputs of the inports and
outports:
feval (app.model_name , [], [], [], ’term ’);

Before we can write the model data into the corresponding tables, we initialize the tables
app. UITable_input .Data = num2cell (zeros (app.n_inputs , 7));
app. UITable_state .Data = num2cell (zeros (app.n_states , 7));
app. UITable_derivative .Data = num2cell (zeros (app.n_states , 3));
app. UITable_output .Data = num2cell (zeros (app.n_outputs , 3));

and specify the checkboxes:12

app. UITable_input .Data (:, 3) = ...
num2cell (false (app.n_inputs , 1));

app. UITable_state .Data (:, 3) = ...
num2cell (false (app.n_states , 1));

app. UITable_derivative .Data (:, 3) = ...
num2cell (false (app.n_states , 1));

app. UITable_output .Data (:, 3) = ...
num2cell (false (app.n_outputs , 1));

We are now ready to write the input, state, derivative, and output names into the
corresponding tables:
app. UITable_input .Data (:, 1) = kill_nl (app. inport_names);
app. UITable_state .Data (:, 1) = app. state_names ;
app. UITable_derivative .Data (:, 1) = app. derivative_names ;
app. UITable_output .Data (:, 1) = kill_nl (app. outport_names);

Additionally, we write the state types into the last column (figure 2.3) of the state table:
app. UITable_state .Data (:, 8) = app. state_types ;

12By assigning false to the third columns of all tables, we “declare” these columns as checkboxes.

16

Chapter 2. trimmod app 2.8. update

Figure 2.3: State types in the last column of the state table

A call to the update method (section 2.8) displays the current number of trim variables
and trim requirements in the app (bold headings in figure 1.1):
update (app , [])

Finally, we enable appropriate menu entries
app. LoadTrimPointMenu . Enable = true;
app. SaveTrimPointMenu . Enable = true;
app. SaveTrimPointAsMenu . Enable = true;

and append the model name to Save Trim Point in ... menu entry:
app. SaveTrimPointMenu .Text = ...

[’&Save Trim Point in ’, app.model_name , ’.mat ’];
end

2.8 update

The update method
function update (app , event)

determines the current number of trim variables and trim requirements, displays these
numbers, and indicates a possible mismatch. It is called as a callback function whenever
the user edits a cell in any of the tables.
We compute the number of trim variables as the sum of all checked inputs and states

17

Chapter 2. trimmod app 2.9. SaveTrimPointMenuSelected

n_trim_variables = ...
sum (cell2mat (app. UITable_input .Data (:, 3))) + ...
sum (cell2mat (app. UITable_state .Data (:, 3)));

and indicate this number in the corresponding label (bold heading in figure 1.1):
app. TrimVariablesLabel .Text = ...

[’Trim Variables (’, num2str (n_trim_variables), ’)’];

The same is done for the number of trim requirements:
n_trim_requirements = ...

sum (cell2mat (app. UITable_derivative .Data (:, 3))) + ...
sum (cell2mat (app. UITable_output .Data (:, 3)));

app. TrimRequirementsLabel .Text = ...
[’Trim Requirements (’, num2str (n_trim_requirements), ’)’];

If there is an equal number of trim variables and trim requirements
if n_trim_variables == n_trim_requirements

we color the corresponding labels black
app. TrimVariablesLabel . FontColor = ’black ’;
app. TrimRequirementsLabel . FontColor = ’black ’;

and enable the Action | Trim menu entry:
app. TrimMenu . Enable = true;

If there is an unequal number of trim variables and trim requirements
else

we indicate the mismatch to the user by coloring the corresponding labels red
app. TrimVariablesLabel . FontColor = ’red ’;
app. TrimRequirementsLabel . FontColor = ’red ’;

and disable the Action | Trim menu entry:
app. TrimMenu . Enable = false;

end
end

2.9 SaveTrimPointMenuSelected

If the user selects the File | SaveTrimPoint menu entry, the corresponding callback
function is called:

18

Chapter 2. trimmod app 2.10. SaveTrimPointAsMenuSelected

function SaveTrimPointMenuSelected (app , event)

Its only task is to save the current trim point in the default file by calling the dedicated
method (section 2.1) with the default file name:
save_trim_point (app , app. model_name)
end

2.10 SaveTrimPointAsMenuSelected

The callback function
function SaveTrimPointMenuSelected (app , event)

is called if the user selects the File | Save Trim Point As menu entry. It opens a file
selection dialog box and lets the user decide in which file they want to save the trim
point:
[file_name , file_path] = ...

uiputfile ([app.model_name , ’.mat ’], ’Save Trim Point As’);

Unfortunately, we now have to bring back the app window to front after a file selection
dialog box. This is a bug workaround that might be unnecessary in the future:
figure (app. TrimModelUIFigure);

If the user has pressed the Cancel button of the file selection dialog box
if ~ file_name

we do not want to do anything and directly terminate this method:
return

end

If the user has selected a valid file name, we hand the user-defined file name over to the
dedicated method (section 2.1):
save_trim_point (app , [file_path , file_name]);
end

2.11 LoadTrimPointMenuSelected

The File | Load Trim Point menu entry calls the corresponding function:
function LoadTrimPointMenuSelected (app , event)

19

Chapter 2. trimmod app 2.11. LoadTrimPointMenuSelected

In the function, we open a file selection dialog box and let the user decide which trim
point to load:
[file_name , file_path] = uigetfile (’*. mat ’, ’Load Trim Point ’);

Unfortunately, we now have to bring back the app window to front after a file selection
dialog box. This is a bug workaround that might be unnecessary in the future:
figure (app. TrimModelUIFigure);

If the user has pressed the Cancel button of the file selection dialog box
if ~ file_name

we do not want to do anything and directly terminate this method:
return

end

If the user has selected a valid file name, we load the save_struct defining the new
trim point from the user-defined file:
load ([file_path , file_name], ’save_struct ’);

Parameters
We update the current parameters with the loaded data:
app. parameters = save_struct . parameters ;

The next lines of code compare the current and the loaded trim point and define which
entities have to be updated. In general, we only want to update those entities that
are present in the current and in the loaded trim point. For that purpose, we use the
intersect command that finds the intersection of two sets and returns the indices of
the common elements in both sets.

Inputs
We find those rows with identical input names in the loaded data and the current table
[~, rows_loaded , rows_current] = intersect ...

(save_struct . input_data (:, 1), app. UITable_input .Data (:, 1));

and update only those rows with identical names:
app. UITable_input .Data(rows_current , :) = ...

save_struct . input_data (rows_loaded , :);

20

Chapter 2. trimmod app 2.11. LoadTrimPointMenuSelected

States
The same procedure updates only the common states, derivatives, and outputs:
[~, rows_loaded , rows_current] = intersect ...

(save_struct . state_data (:, 1), app. UITable_state .Data (:, 1));

app. UITable_state .Data(rows_current , :) = ...
save_struct . state_data (rows_loaded , :);

Derivatives
[~, rows_loaded , rows_current] = intersect ...

(save_struct . derivative_data (:, 1), ...
app. UITable_derivative .Data (:, 1));

app. UITable_derivative .Data(rows_current , :) = ...
save_struct . derivative_data (rows_loaded , :);

Outputs
[~, rows_loaded , rows_current] = intersect ...

(save_struct . output_data (:, 1), ...
app. UITable_output .Data (:, 1));

app. UITable_output .Data(rows_current , :) = ...
save_struct . output_data (rows_loaded , :);

We want to warn the user if there are entities in the loaded trim point that are not present
in the current trim point and vice versa. Therefore, we create a cell array containing all
input, state, and output names from the loaded trim point
loaded = union (union (...
save_struct . input_data (:, 1), ...
save_struct . state_data (:, 1)), ...
save_struct . output_data (:, 1));

and another cell array containing all input, state, and output names from the current
model:
current = union (union (...
app. UITable_input .Data (:, 1), ...
app. UITable_state .Data (:, 1)), ...
app. UITable_output .Data (:, 1));

The setdiff command finds those names that are present in the loaded data but not
in the current model
loaded_without_current = setdiff (loaded , current);

21

Chapter 2. trimmod app 2.11. LoadTrimPointMenuSelected

If there are more names in the loaded data
if ~ isempty (loaded_without_current)

we inform the user:
warndlg ([...

’The following names are present in the file ’, ...
newline , ...
file_name , ...
newline , ...
’but not in the model ’, ...
newline , ...
app.model_name , ...
’:’; ...
loaded_without_current ; ...
’I have just loaded the intersection of the sets.’], ...
’Warning ’)

end

Informing the user about those names that are present in the current model but not in
the loaded data is done in a similar way:
current_without_loaded = setdiff (current , loaded);

if ~ isempty (current_without_loaded)
warndlg ([...

’The following names are present in the model ’, ...
newline , ...
app.model_name , ...
newline , ...
’but not in the file ’, ...
newline , ...
file_name , ...
’:’; ...
current_without_loaded ; ...
’I have just loaded the intersection of the sets.’], ...
’Warning ’)

end

Finally, we update the number of trim variables and trim requirements:
update (app , [])
end

22

Chapter 2. trimmod app 2.12. selection

2.12 selection

If the user selects a name in the first column of a table, we want to open the corresponding
block diagram and indicate the selected block. In
function selection (app , event)

we find the indices of the selected table element
indizes = event. Indices ;

and check if the user selected a name (in the first column)
if indizes (2) == 1

If this is the case, we buffer13 the name of the selected element:
block_to_open = event. Source .Data{ indizes (1), 1};

In order to get rid of potential ___1, ___2, . . . of vector names, we split (those) at ___

block_to_open = split (block_to_open , ’___ ’);

just take the first part and ignore the second part:
block_to_open = block_to_open {1};

Elements in the Derivative table contain Deriv. of which is not part of the block
name:

block_to_open = erase (block_to_open , ’Deriv. of ’);

Finally, we add the model name to the block to be opened:
block_to_open = [app.model_name , ’/’, block_to_open];

Next, we want to open the block diagram containing the block to be opened. Therefore,
we find the indices of all slashes in the name of the block to be opened

slashes = strfind (block_to_open , ’/’);

and determine the index of the last slash:
last_slash = slashes (end);

The system (block diagram) to be opened is the whole path to the block to be opened
up to the last slash:

system_to_open = block_to_open (1 : last_slash - 1);

13The following remodifications are necessary because we modified the block names in the tables for
better readability; now we have to take those modifications back. As an alternative, we could have
stored the original block names together with the modified names . . .

23

Chapter 2. trimmod app 2.13. TrimMenuSelected

The system has to be loaded before one of its blocks can be opened:
load_system (app. model_name)

Finally, we can open the block diagram containing the block to be opened
open_system (system_to_open);

We blink the selected block five times:
for i_blink = 1 : 5

In a loop that toggles between on and off
for selection = {’on’, ’off ’}

we cycle the selection of the block in question
set_param (block_to_open , ’Selected ’, selection {1})

and wait 100ms before we toggle back:
pause (0.1)

end
end

end
end

2.13 TrimMenuSelected

After the user has loaded a model and defined a valid trim point, they can select the
Action | Trim menu entry that calls the corresponding method:
function TrimMenuSelected (app , event)

For easier access, we copy the current values of the states, inputs, derivatives, and
outputs to app properties with appropriate names:
app.x = cell2mat (app. UITable_state .Data (:, 2));
app.u = cell2mat (app. UITable_input .Data (:, 2));
app.d = cell2mat (app. UITable_derivative .Data (:, 2));
app.y = cell2mat (app. UITable_output .Data (:, 2));

The same is done with the indices of all trim variables and trim requirements
app.i_x = find (cell2mat (app. UITable_state .Data (:, 3)));
app.i_u = find (cell2mat (app. UITable_input .Data (:, 3)));
app.i_d = find (cell2mat (app. UITable_derivative .Data (:, 3)));
app.i_y = find (cell2mat (app. UITable_output .Data (:, 3)));

24

Chapter 2. trimmod app 2.13. TrimMenuSelected

and the names of inputs, states, derivatives and outputs:
app.x_nam = app. UITable_state .Data (:, 1);
app.u_nam = app. UITable_input .Data (:, 1);
app.d_nam = app. UITable_derivative .Data (:, 1);
app.y_nam = app. UITable_output .Data (:, 1);

We read the Maximum Trim Step values from the states and inputs tables
del_x_max = cell2mat (app. UITable_state .Data (:, 4));
del_u_max = cell2mat (app. UITable_input .Data (:, 4));

and replace every zero-element with the default value (1e42):
del_x_max (~ del_x_max) = 1e42;
del_u_max (~ del_u_max) = 1e42;

The same is done with the Linearization Step values
del_x_lin = cell2mat (app. UITable_state .Data (:, 5));
del_u_lin = cell2mat (app. UITable_input .Data (:, 5));

del_x_lin (~ del_x_lin) = 1e -6*(1 + abs (app.x(~ del_x_lin)));
del_u_lin (~ del_u_lin) = 1e -6*(1 + abs (app.u(~ del_u_lin)));

the Minimum Values
x_min = cell2mat (app. UITable_state .Data (:, 6));
u_min = cell2mat (app. UITable_input .Data (:, 6));

x_min (~ x_min) = -inf;
u_min (~ u_min) = -inf;

and the Maximum Values:
x_max = cell2mat (app. UITable_state .Data (:, 7));
u_max = cell2mat (app. UITable_input .Data (:, 7));

x_max (~ x_max) = inf;
u_max (~ u_max) = inf;

We save the old, pre-trim values in a structure
app. pre_trim .state = app. UITable_state .Data (:, 2);
app. pre_trim .input = app. UITable_input .Data (:, 2);
app. pre_trim . derivative = app. UITable_derivative .Data (:, 2);
app. pre_trim . output = app. UITable_output .Data (:, 2);

and finally call the actual trim algorithm:

25

Chapter 2. trimmod app 2.13. TrimMenuSelected

[x_tr , u_tr , d_tr , y_tr , ~, app. info_struct] = jj_trim (...
app.model_name , ...
app.x, app.u, app.d, app.y, ...
app.i_x , app.i_u , app.i_d , app.i_y , ...
app.x_nam , app.u_nam , app.d_nam , app.y_nam , ...
del_x_max , del_u_max , del_x_lin , del_u_lin , ...
app.parameters , ...
x_min , x_max , u_min , u_max);

If the trim algorithm returns a valid info structure containing the progressions of all
states, inputs, derivatives, and outputs
if ~ isempty (app. info_struct)

we enable the Action | Untrim and the Options | Show Overview menu entries:
app. UntrimMenu . Enable = true;
app. ShowOverviewMenu . Enable = true;

end

Next, we copy the trimmed states, inputs, derivatives, and outputs back into the corre-
sponding tables:
app. UITable_state .Data (:, 2) = num2cell (x_tr);
app. UITable_input .Data (:, 2) = num2cell (u_tr);
app. UITable_derivative .Data (:, 2) = num2cell (d_tr);
app. UITable_output .Data (:, 2) = num2cell (y_tr);

Transfer trim point to model
Life gets a bit tricky here: We want to use the new trim point as the initial simula-
tion values (states and inputs) of the current Simulink model. For that purpose, we
can use the Input and Initial state edit texts in the Modeling | Model Settings | Data
Import/Export | Configuration Parameters | Load from workspace menu entry of the
model.
Unfortunately, Simulink claims14 the right to alter the order of the states during the sim-
ulation. Therefore, we cannot simply use the trimmed state vector (x_tr) in the Initial
state edit text, but we have to convert the vector to a structure that additionally features
the corresponding state names. Additionally, in order to save the trim point together
with the model, we have to save this trim point structure in the model workspace.
First, we add a zero as the time span trailing the input vector15:
u_tr_with_zero = [0, u_tr ’];

14In [1], the Simulink documentation warns: “Avoid using an array for an initial state. If the order of
the elements in the array does not match the order in which blocks initialize, the simulation can
produce unexpected results.”

15Simulink does not (yet) warn about using a vector as the initial input.

26

Chapter 2. trimmod app 2.13. TrimMenuSelected

Next, we convert the state trim vector to a string with maximum precision:16

x_tr_string = mat2str (x_tr , 42);

and enable the checkboxes in the Initial state and Input menu entry of the current model
set_param (app.model_name , ’LoadInitialState ’, ’on’);
set_param (app.model_name , ’LoadExternalInput ’, ’on’);

The next three steps may seem a bit bold and may not survive every future Simulink
version; but at least right now this seems to be the most elegant way to convert the
initial state vector to its corresponding structure:
We transfer the state trim vector to the corresponding edit text
set_param (app.model_name , ’InitialState ’, x_tr_string);

set the SaveFormat to Structure

set_param (app.model_name , ’SaveFormat ’, ’Structure ’);

and reread17 the initial state back as a structure into a new variable:
x_tr_structure = ...
Simulink . BlockDiagram . getInitialState (app. model_name);

We retrieve a handle to the model workspace
model_workspace = get_param (app.model_name , ’ModelWorkspace ’);

and write the initial state (as a structure) and the initial input (as a vector) to the model
workspace:
assignin (model_workspace , ...
’initial_state_in_model_workspace ’, x_tr_structure)

assignin (model_workspace , ...
’initial_input_in_model_workspace ’, u_tr_with_zero)

Finally, we use these model workspace variables in the Input and Initial state edit texts:
set_param (app.model_name , ...
’ExternalInput ’, ’initial_input_in_model_workspace ’);

set_param (app.model_name , ...
’InitialState ’, ’initial_state_in_model_workspace ’);

16A postulated precision of 42 seems to give more significant(?) digits than the recommended conversion
without any postulated precision.

17The getInitialState command reads the initial state vector from the Initial state edit text, auto-
matically converts it into a suitable structure including the state names and returns the structure.

27

Chapter 2. trimmod app 2.14. UntrimMenuSelected

2.14 UntrimMenuSelected

If the user is not satisfied with the trim result, they can use the Action | Untrim menu
entry that calls the corresponding method
function UntrimMenuSelected (app , event)

that tries to reestablish the pre-trim state. We disable the Action | Untrim menu entry
because only one untrim history back-step is possible
app. UntrimMenu . Enable = false;

and copy the pre-trim states, inputs, derivatives, and outputs into the corresponding
tables:
app. UITable_state .Data (:, 2) = app. pre_trim .state;
app. UITable_input .Data (:, 2) = app. pre_trim .input;
app. UITable_derivative .Data (:, 2) = app. pre_trim . derivative ;
app. UITable_output .Data (:, 2) = app. pre_trim . output ;
end

2.15 ShowOverviewMenuSelected

Selecting the Options | Show Overview menu entry calls the corresponding method
function ShowOverviewMenuSelected (app , event)

that deletes a potentially remaining overview app
delete (app. overview_app);

and opens a new overview table (chapter 4) that displays the progressions of all states,
inputs, derivatives, and outputs:
app. overview_app = trimmod_overview (app);
end
end

Additionally, the table displays the cost function, the step type, the bisection counter,
the step limitation, and the Jacobian matrix for every iteration step.

28

3 trimmod_parameters app

If the user selects the Options | Additional Parameters menu entry (section 2.6) in the
trimmod app, a separate app
classdef trimmod_parameters < matlab .apps. AppBase

is opened that allows the definition of a few general trim parameters (figure 3.1)

Figure 3.1: Default values of the additional parameters

In the app, we define a single private property that will allow us to access the calling
app
properties (Access = private)

trimmod
end

and three private methods (startupFcn, OkayButtonPushed, CancelButtonPushed):
methods (Access = private)

3.1 startupFcn

The startupFcn method of the trimmod_parameters app
function startupFcn (app , trimmod)

29

Chapter 3. trimmod_parameters app 3.2. OkayButtonPushed

saves the name of the calling app (trimmod) in a property in order to allow the Okay-
ButtonPushed method (section 3.2) to access the public properties of the trimmod app
(chapter 2) directly:
app. trimmod = trimmod ;

We move the lower left vertex of the parameters dialog figure to the lower left vertex of
the TrimMod figure1

app. TrimModParametersUIFigure . Position (1 : 2) = ...
app. trimmod . TrimModelUIFigure . Position (1 : 2);

and populate the EditFields, the DropDownList, and the CheckBox with the current
values from the calling trimmod app:
app. MaximumnumberofiterationsEditField .Value = ...

trimmod . parameters . n_iter_max ;
app. CosttobegainedEditField .Value = ...

trimmod . parameters . cost_tbg ;
app. CompilationDropDown .Value = ...

trimmod . parameters . CompileFlag ;
app. MaximumnumberofbisectionsEditField .Value = ...

trimmod . parameters . n_bisec_max ;
app. EnablemessageboxesandconsolemessagesCheckBox .Value = ...

trimmod . parameters . EnableMessages ;
end

3.2 OkayButtonPushed

If the user pushes the Okay button in the trimmod_parameters app
function OkayButtonPushed (app , event)

we write the values from the EditFields, the DropDownList, and the CheckBox back to
the calling trimmod app
app. trimmod . parameters . n_iter_max = ...

app. MaximumnumberofiterationsEditField .Value;
app. trimmod . parameters . cost_tbg = ...

app. CosttobegainedEditField .Value;
app. trimmod . parameters . CompileFlag = ...

app. CompilationDropDown .Value;
app. trimmod . parameters . n_bisec_max = ...

app. MaximumnumberofbisectionsEditField .Value;
app. trimmod . parameters . EnableMessages = ...

app. EnablemessageboxesandconsolemessagesCheckBox .Value;

1This might be useful if the user (has more than one monitor and) has moved the TrimMod figure (to
a different monitor).

30

Chapter 3. trimmod_parameters app 3.3. CancelButtonPushed

and close the app:
delete (app)
end

3.3 CancelButtonPushed

If the user pushes the Cancel button in the trimmod_parameters app
function CancelButtonPushed (app , event)

we just close the app:
delete (app)
end
end

31

4 trimmod_overview app

If the user selects the Options | Show Overview menu entry in the trimmod app, a
separate app
classdef trimmod_overview < matlab .apps. AppBase

is opened that displays the intermediate trim results of every iteration step (figure 4.1).

32

Chapter 4. trimmod_overview app

Figure 4.1: Intermediate iteration step results

Just like in the trimmod_parameters app (chapter 3), we define a single private property
that will allow us to access the calling app
properties (Access = private)

trimmod
end

33

Chapter 4. trimmod_overview app 4.1. startupFcn

and two private methods (startupFcn, UITableCellSelection):
methods (Access = private)

4.1 startupFcn

The startupFcn method of the trimmod_overview app
function startupFcn (app , trimmod)

saves the name of the calling app (trimmod) in a property in order to allow the Cell-
Selection method (section 4.2) to access the public properties of the trimmod app
(chapter 2) directly:
app. trimmod = trimmod ;

We position the overview figure “over” the TrimMod figure,
app. TrimModOverviewUIFigure . Position = ...

app. trimmod . TrimModelUIFigure . Position ;

fill the whole Overview figure with the Overview table
app. UITable . Position = [...

1, ...
1, ...
app. TrimModOverviewUIFigure . Position (3) , ...
app. TrimModOverviewUIFigure . Position (4)];

and receive the number of trim iterations from the calling trimmod app:
n_iter = trimmod . info_struct . n_iter ;

The remaining lines of code populate the table displayed in figure 4.1. The heading of
the first table column is static:
app. UITable . ColumnName {1} = ...

’States , Inputs , Derivatives , Outputs , Cost , ... ’;

For the remaining headings we start a loop over all iterations:
for i_iter = 0 : n_iter

and generate the heading of each data column dynamically:
app. UITable . ColumnName { i_iter + 2} = ...

[’Iteration ’, num2str (i_iter)];
end

34

Chapter 4. trimmod_overview app 4.1. startupFcn

Each table row represents the iterated values of states, inputs derivatives, outputs, and
other potentially interesting variables. For better interpretability, we prepare a column
holding the variable names
names = [...

trimmod .x_nam; ...
trimmod .u_nam; ...
trimmod .d_nam; ...
trimmod .y_nam; ...
’Cost function ’; ...
’Step type ’; ...
’Bisection counter ’; ...
’Step limitation ’; ...
’Jacobian ’];

initialize the content of the table as a cell array of proper size
app. UITable .Data = cell (numel (names), n_iter + 2);

and use the names as the first table column:
app. UITable .Data (:, 1) = names;

The remaining columns hold the data. We prepare the data to be inserted into the table:
data = num2cell ([...

trimmod . info_struct .x; ...
trimmod . info_struct .u; ...
trimmod . info_struct .d; ...
trimmod . info_struct .y; ...
trimmod . info_struct .cost; ...
0, trimmod . info_struct . StepType ; ...
0, trimmod . info_struct . BisecCounter ; ...
0, trimmod . info_struct . LimitedStep]);

The last row of the table shall contain Click me! buttons (figure 4.1) since the Jacobians
are matrices themselves that cannot be displayed inside the table. If there is no iteration
because the initial Jacobian is singular
if n_iter == 0

we just need one button for the initial Jacobian:
data = [data; {’Click me!’}];

If there are iterations
else

the last iteration does not return a Jacobian:

35

Chapter 4. trimmod_overview app 4.2. UITableCellSelection

data = [data; repmat ({’Click me!’}, 1, n_iter), {’’}];
end

Finally, we insert the prepared data into the table:
app. UITable .Data (:, 2 : end) = data;
end

4.2 UITableCellSelection

The cell selection callback method of the table
function UITableCellSelection (app , event)

is called if the user selects any cell of the table. In that case, we buffer the row and
column indices of the currently selected cell
indices = event. Indices ;

and check if the user has selected one of the Click me! buttons
if strcmp (app. UITable .Data{ indices (1), indices (2)} , ’Click me!’)

If this is the case, we delete a potentially open Jacobian figure
delete (app. trimmod . jaco_figure)

and open a new figure to display the current Jacobian.
We move its lower left vertex 100 pixel up with respect to the lower left vertex of the
Overview figure, in order to keep the Click me! row of the Overview app visible:
app. trimmod . jaco_figure = uifigure (’Position ’, [...

app. TrimModOverviewUIFigure . Position (1), ...
app. TrimModOverviewUIFigure . Position (2) + 100, ...
app. TrimModOverviewUIFigure . Position (3), ...
app. TrimModOverviewUIFigure . Position (4) - 100]);

We adjust the figure title
app. trimmod . jaco_figure .Name = ...

[’Jacobian at iteration step ’, num2str (indices (2)) - 2];

and create an empty table in the figure:
table_jaco = uitable (app. trimmod . jaco_figure , ...

’Position ’, [1, 1, 1300 , 700]);

We build the generalized input names vector by concatenating the state names and the
input names

36

Chapter 4. trimmod_overview app 4.2. UITableCellSelection

x_u_nam = [app. trimmod .x_nam; app. trimmod .u_nam];

and the generalized output names vector by concatenation of the derivative names and
the output names:
d_y_nam = [app. trimmod .d_nam; app. trimmod .y_nam];

We find the indices of the trim variables in the generalized input names vector
index_trim_variables = ...

[app. trimmod .i_x; length (app. trimmod .x) + app. trimmod .i_u];

and the indices of the trim requirements in the generalized output names vector
index_trim_requirements = ...

[app. trimmod .i_d; length (app. trimmod .d) + app. trimmod .i_y];

and use the current Jacobian as the data of the table:
table_jaco .Data = num2cell ...

(app. trimmod . info_struct .jaco{ indices (2) - 1});

Finally, we use the names of the trim requirements as the row names of the table
table_jaco . RowName = d_y_nam (index_trim_requirements);

and the names of the trim variables as the column names of the table
table_jaco . ColumnName = x_u_nam (index_trim_variables);

and give all columns an equal width:
table_jaco . ColumnWidth = ’1x’;
end
end
end

37

5 jj_trim

This chapter does not explain every single line of code of jj_trim; we merely focus on
the mathematical background of the trim algorithm:
A nonlinear time-invariant system can be described via its differential equation system

d = f(x, u) (5.1)

and its output equation system

y = g(x, u) (5.2)

where u is the input vector, x is the state vector, d = dx
dt

is the time derivative of the
state vector, y is the output vector, and f and g are nonlinear vector functions, evaluated
in every simulation time step. State vector x and input vector u are the independent
variables on the right-hand side of the equations. Both vectors can be combined into a
generalized input vector

xu =
[
x
u

]
Derivative vector d and output vector y are the left-hand side results of the function
evaluations. They can be combined into the generalized output vector

dy =
[
d
y

]

Both equation systems can then be combined into

dy = h(xu) (5.3)

where
h =

[
f
g

]
is the generalized system vector function.
To start a simulation, all elements of the generalized input vector xu (the complete x and
u vectors) have to be known for the first evaluations of equation (5.3). Unfortunately,
the trim point is often defined as a mixture of u, x, d, and y: The initial speed (x) of

38

Chapter 5. jj_trim

a car might be known, but not the corresponding engine power or the accelerator angle
(u) for no acceleration (d). The radius of the curve might be predefined, but not the
corresponding turning wheel angle, . . . Usually the user initially defines some elements
of the generalized output vector dy that have to be satisfied, and some elements of the
generalized input vector xu that are known a priori. The other (unknown) elements
of the generalized input vector xu have to be found by the trim algorithm. The un-
known elements of the generalized output vector dy can then easily be calculated via
equation (5.3) if xu is completely known.
Both generalized vectors can therefore be split up into a known (subscript k) and an
unknown (subscript n) part:

dy =
[
dyk

dyn

]
(5.4)

xu =
[
xuk

xun

]
(5.5)

Accordingly, equation (5.3) too can be split up into two (vector) equations, one for the
predefined elements of dy and one for the unknowns:

dyk = hk(xu) = hk

([
xuk

xun

])
(5.6)

dyn = hn(xu) = hn

([
xuk

xun

])
(5.7)

The trim algorithm now has to solve the nonlinear equation system (5.6) with respect to
the unknown vector xun (called the trim variables vector), while the vector dyk is called
the trim requirements vector.
Trim requirements dyk Those (known) elements of the generalized output vector dy

that have to be satisfied
Trim variables xun Those (unknown) elements of the generalized input vector xu that

the trim algorithm is free to vary
For a unique solution of equation (5.6), the number of (unknown) trim variables (length
of xun) has to equal the number of equations, given by the number of trim requirements
(length of dyk).
If this prerequisite is fulfilled, TrimMod (the graphical user interface) calls jj_trim (the
actual trim algorithm).

39

Chapter 5. jj_trim

xu_n

delta_xu_n

xu_n_trimxu_n_newxu_n_old

Trim
Point

First
Iteration

Initial
Guess

dy_k_old

dy_k_new

dy_k_trim

delta_dy_k

dy_k

Tangent

h_k

Figure 5.1: Newton-Raphson trim algorithm

As shown in figure 5.1, the first step of jj_trim is to insert the initial guess of the trim
variable vector xunold

on the right-hand side of equation (5.6) and to check whether the
trim requirement vector dyktrim

is already met by dykold
. As this is usually not the case,

a modified multidimensional Newton-Raphson algorithm is used to iteratively find new
trim variable vectors xunnew that – hopefully – finally approach the sought xuntrim

.
Newton-Raphson relies on the local derivatives which can graphically be represented as
a tangent hyperplane in the multidimensional case. The linearization routine jj_lin
finds the gradients of this tangent hyperplane at xunold

and returns a Jacobian sensitivity
matrix jaco, which represents the linear relation

∆dyk = jaco ·∆xun (5.8)

of the trim requirement error

∆dyk = dyktrim
− dykold

(5.9)

with respect to the trim variable correction

∆xun = xunnew − xunold
(5.10)

A singular system decomposition (singular values and singular vectors) of the sensitivity
matrix jaco is done in order to find trim variables that have no influence on any trim re-
quirement, trim requirements that cannot be influenced by any trim variable, and linear

40

Chapter 5. jj_trim

dependencies of trim variables or trim requirements. One or more singular values of zero
indicate a wrong choice of trim requirements and/or trim variables. The corresponding
singular vectors clearly show which trim requirements and trim variables are responsible
for the rank deficiency. This detailed information can then be used to chose those trim
requirements and trim variables that correctly describe the desired trim state.
If the sensitivity matrix jaco has full rank (is non-singular), the linear equation system
(5.8) can be solved via Matlab’s backslash operator:

∆xun = jaco\∆dyk

and equation (5.10) can be used to find the next solution vector:

xunnew = xunold
+ ∆xun

41

Bibliography

[1] Mathworks, “Documentation: Initial state,” 2022. [Online]. Available: https:
//de.mathworks.com/help/simulink/gui/initial-state.html

42

https://de.mathworks.com/help/simulink/gui/initial-state.html
https://de.mathworks.com/help/simulink/gui/initial-state.html

	Manual
	Block diagram and typical use case

	trimmod app
	save_trim_point
	startupFcn
	ExitTrimModMenuSelected
	AboutTrimModMenuSelected
	HelponTrimModMenuSelected
	AdditionalParametersMenuSelected
	OpenModelMenuSelected
	update
	SaveTrimPointMenuSelected
	SaveTrimPointAsMenuSelected
	LoadTrimPointMenuSelected
	selection
	TrimMenuSelected
	UntrimMenuSelected
	ShowOverviewMenuSelected

	trimmod_parameters app
	startupFcn
	OkayButtonPushed
	CancelButtonPushed

	trimmod_overview app
	startupFcn
	UITableCellSelection

	jj_trim

